Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Pathog ; 20(6): e1012260, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885242

RESUMO

Adeno-associated virus (AAV) serotypes from primates are being developed and clinically used as vectors for human gene therapy. However, the evolutionary mechanism of AAV variants is far from being understood, except that genetic recombination plays an important role. Furthermore, little is known about the interaction between AAV and its natural hosts, human and nonhuman primates. In this study, natural AAV capsid genes were subjected to systemic evolutionary analysis with a focus on selection drives during the diversification of AAV lineages. A number of positively selected sites were identified from these AAV lineages with functional relevance implied by their localization on the AAV structures. The selection drives of the two AAV2 capsid sites were further investigated in a series of biological experiments. These observations did not support the evolution of the site 410 of the AAV2 capsid driven by selection pressure from the human CD4+ T-cell response. However, positive selection on site 548 of the AAV2 capsid was directly related to host humoral immunity because of the profound effects of mutations at this site on the immune evasion of AAV variants from human neutralizing antibodies at both the individual and population levels. Overall, this work provides a novel interpretation of the genetic diversity and evolution of AAV lineages in their natural hosts, which may contribute to their further engineering and application in human gene therapy.


Assuntos
Proteínas do Capsídeo , Dependovirus , Evolução Molecular , Seleção Genética , Dependovirus/genética , Dependovirus/imunologia , Humanos , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Variação Genética , Terapia Genética
2.
J Environ Sci (China) ; 139: 84-92, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105080

RESUMO

Additives could improve composting performance and reduce gaseous emission, but few studies have explored the synergistic of additives on H2S emission and compost maturity. This research aims to make an investigation about the effects of chemical additives and mature compost on H2S emission and compost maturity of kitchen waste composting. The results showed that additives increased the germination index value and H2S emission reduction over 15 days and the treatment with both chemical additives and mature compost achieved highest germination index value and H2S emission reduction (85%). Except for the treatment with only chemical additives, the total sulfur content increased during the kitchen waste composting. The proportion of effective sulfur was higher with the addition of chemical additives, compared with other groups. The relative abundance of H2S-formation bacterial (Desulfovibrio) was reduced and the relative abundance of bacterial (Pseudomonas and Paracoccus), which could convert sulfur-containing substances and H2S to sulfate was improved with additives. In the composting process with both chemical additives and mature compost, the relative abundance of Desulfovibrio was lowest, while the relative abundance of Pseudomonas and Paracoccus was highest. Taken together, the chemical additives and mature compost achieved H2S emission reduction by regulating the dynamics of microbial community.


Assuntos
Compostagem , Microbiota , Solo/química , Gases , Enxofre
3.
J Environ Sci (China) ; 143: 189-200, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644016

RESUMO

Microbial activity and interaction are the important driving factors in the start-up phase of food waste composting at low temperature. The aim of this study was to explore the effect of inoculating Bacillus licheniformis on the degradation of organic components and the potential microbe-driven mechanism from the aspects of organic matter degradation, enzyme activity, microbial community interaction, and microbial metabolic function. The results showed that after inoculating B. licheniformis, temperature increased to 47.8°C on day 2, and the degradation of readily degraded carbohydrates (RDC) increased by 31.2%, and the bioheat production increased by 16.5%. There was an obvious enhancement of extracellular enzymes activities after inoculation, especially amylase activity, which increased by 7.68 times on day 4. The inoculated B. licheniformis colonized in composting as key genus in the start-up phase. Modular network analysis and Mantel test indicated that inoculation drove the cooperation between microbial network modules who were responsible for various organic components (RDC, lipid, protein, and lignocellulose) degradation in the start-up phase. Metabolic function prediction suggested that carbohydrate metabolisms including starch and sucrose metabolism, glycolysis / gluconeogenesis, pyruvate metabolism, etc., were improved by increasing the abundance of related functional genes after inoculation. In conclusion, inoculating B. licheniformis accelerated organic degradation by driving the cooperation between microbial network modules and enhancing microbial metabolism in the start-up phase of composting.


Assuntos
Bacillus licheniformis , Compostagem , Bacillus licheniformis/metabolismo , Compostagem/métodos , Microbiologia do Solo , Biodegradação Ambiental , Microbiota/fisiologia , Temperatura Baixa
4.
Biochim Biophys Acta Rev Cancer ; 1879(4): 189107, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734035

RESUMO

The functions of mitochondria, including energy production and biomolecule synthesis, have been known for a long time. Given the rising incidence of cancer, the role of mitochondria in cancer has become increasingly popular. Activated by components released by mitochondria, various pathways interact with each other to induce immune responses to protect organisms from attack. However, mitochondria play dual roles in the progression of cancer. Abnormalities in proteins, which are the elementary structures of mitochondria, are closely linked with oncogenesis. Both the aberrant accumulation of intermediates and mutations in enzymes result in the generation and progression of cancer. Therefore, targeting mitochondria to treat cancer may be a new strategy. Several drugs aimed at inhibiting mutated enzymes and accumulated intermediates have been tested clinically. Here, we discuss the current understanding of mitochondria in cancer and the interactions between mitochondrial functions, immune responses, and oncogenesis. Furthermore, we discuss mitochondria as hopeful targets for cancer therapy, providing insights into the progression of future therapeutic strategies.


Assuntos
Mitocôndrias , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Mitocôndrias/patologia , Animais , Carcinogênese/imunologia
5.
Sci Total Environ ; 946: 174461, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38964380

RESUMO

Inoculation is widely used in composting to improve the mineralization process, however, the link of fungal inoculant to humification is rarely proposed. The objective of this study was to investigate the effect of compound fungal inoculation on humification process and fungal community dynamics in corn straw composting with two different kinds of nitrogen sources [pig manure (PM) and urea (UR)]. Structural equation modeling and random forest analysis were conducted to identify key fungi and explore the fungi-mediated humification mechanism. Results showed that fungal inoculation increased the content of humic acids in PM and UR by 71.76 % and 53.01 % compared to control, respectively. High-throughput sequencing indicated that there were more key fungal genera for lignin degradation in PM especially in the later stage of composting, but a more complex fungal (genera) connections with lower humification degree was found in UR. Network analysis and random forest suggested that inoculation promoted dominant genus such as Coprinus, affecting lignocellulose degradation. Structural equation modeling indicated that fungal inoculation could promote humification by direct pathway based on lignin degradation and indirect pathway based on stimulating the indigenous microbes such as Scedosporiu and Coprinus for the accumulation of carboxyl and polyphenol hydroxyl groups. In summary, fungal inoculation is suitable to be used combining with complex nitrogen source such as pig manure in straw composting.


Assuntos
Compostagem , Fungos , Substâncias Húmicas , Esterco , Nitrogênio , Zea mays , Substâncias Húmicas/análise , Nitrogênio/análise , Esterco/microbiologia , Microbiologia do Solo , Animais , Suínos , Lignina/metabolismo
6.
Bioresour Technol ; 401: 130746, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679240

RESUMO

Nanotechnology and biotechnology offer promising avenues for bolstering food security through the facilitation of soil nitrogen (N) sequestration and the reduction of nitrate leaching. Nonetheless, a comprehensive and mechanistic evaluation of their effectiveness and safety remains unclear. In this study, a soil remediation strategy employing nano-Fe3O4 and straw in N-contaminated soil was developed to elucidate N retention mechanisms via diverse metagenomics techniques. The findings revealed that subsoil amended with straw, particularly in conjunction with nano-Fe3O4, significantly increased subsoil N content (53.2%) and decreased nitrate concentration (74.6%) in leachate. Furthermore, the enrichment of functional genes associated with N-cycling, sulfate, nitrate, and iron uptake, along with chemotaxis, and responses to environmental stimuli or microbial collaboration, effectively mitigates nitrate leaching while enhancing soil N sequestration. This study introduces a pioneering approach utilizing nanomaterials in soil remediation, thereby offering the potential for the cultivation of safe vegetables in high N input greenhouse agriculture.


Assuntos
Agricultura , Desnitrificação , Nitrogênio , Solo , Agricultura/métodos , Solo/química , Nitratos , Microbiologia do Solo , Poluentes do Solo/metabolismo
7.
Front Microbiol ; 15: 1384577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841060

RESUMO

In modern ecological systems, the overuse and misuse of antibiotics have escalated the prevalence of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), positioning them as emerging environmental contaminants. Notably, composting serves as a sustainable method to recycle agricultural waste into nutrient-rich fertilizer while potentially reducing ARGs and MGEs. This study conducted a 47-day composting experiment using pig manure and corn straw, supplemented with chitin and N-Acetyl-D-glucosamine, to explore the impact of these additives on the dynamics of ARGs and MGEs, and to unravel the interplay between these genetic elements and microbial communities in pig manure composting. Results showed that adding 5% chitin into composting significantly postponed thermophilic phase, yet enhanced the removal efficiency of total ARGs and MGEs by over 20% compared to the control. Additionally, the addition of N-Acetyl-D-glucosamine significantly increased the abundance of tetracycline-resistant and sulfonamide-resistant genes, as well as MGEs. High-throughput sequencing revealed that N-Acetyl-D-glucosamine enhanced bacterial α-diversity, providing diverse hosts for ARGs and MGEs. Resistance mechanisms, predominantly efflux pumps and antibiotic deactivation, played a pivotal role in shaping the resistome of composting process. Co-occurrence network analysis identified the key bacterial phyla Proteobacteria, Firmicutes, Gemmatimonadota, and Myxococcota in ARGs and MGEs transformation and dissemination. Redundancy analysis indicated that physicochemical factors, particularly the carbon-to-nitrogen ratio emerged as critical variables influencing ARGs and MGEs. The findings lay a foundation for the developing microbial regulation method to reduce the risks of ARGs in animal manure composts.

8.
Bioresour Technol ; 410: 131305, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155021

RESUMO

Composting is one of the primary methods for organic waste recycling in China. This study aims to analyze the product quality of organic fertilizer enterprises from the perspective of actual production and the relationship between production process variations and organic matter content in organic fertilizers based on 348 samples from 229 organic fertilizer companies across 22 provinces. Results showed that fertilizers produced through composting processes contain higher organic matter, averaging 45.42 %, compared to commercial organic fertilizers and bio-organic fertilizers. Raw materials, equipment, methods, operational scale, and personnel structure are key factors affecting the content of organic matter in products. Optimizing equipment and processes in Chinese organic fertilizer companies could increase organic matter content to 49.3 %, potentially reducing annual carbon emissions by an estimated 3.07 to 6.97 billion kg of CO2 equivalent, thereby supporting the realization of dual carbon goals.

9.
Sci Total Environ ; 951: 175565, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151620

RESUMO

Long-chain fatty acids (LCFAs) are recognized as a significant inhibitory factor in anaerobic digestion of food waste (FW), yet they are inevitably present in FW due to lipid hydrolysis. Given their distinct synthesis mechanism from traditional anaerobic digestion, little is known about the effect of LCFAs on FW acidogenic fermentation. This study reveals that total volatile fatty acids (VFAs) production increased by 9.98 % and 4.03 % under stearic acid and oleic acid loading, respectively. Acetic acid production increased by 20.66 % under stearic acid loading compared to the control group (CK). However, the LCFA stress restricted the degradation of solid organic matter, particularly under oleic acid stress. Analysis of microbial community structure and quorum sensing (QS) indicates that LCFA stress enhanced the relative abundance of Lactobacillus and Klebsiella. In QS system, the relative abundance of luxS declined from 0.157 % to 0.116 % and 0.125 % under oleic acid and stearic acid stress, respectively. LCFA stress limited the Autoinducer-2 (AI-2) biosynthesis, suggesting that microorganisms cannot use QS to resist the LCFA stress. Metagenomic sequencing showed that LCFA stress promoted acetic acid production via the conversion of pyruvate and acetyl-CoA to acetate. Direct conversion of pyruvate to acetic acid increased by 47.23 % compared to the CK group, accounting for the enhanced acetic acid production under stearic acid loading. The abundance of ß-oxidation pathway under stearic acid loading was lower than under oleic acid loading. Overall, the stimulating direct conversion of pyruvate plays a pivotal role in enhancing acetic acid biosynthesis under stearic acid loading, providing insights into the effect of LCFA on mechanism of FW acidogenic fermentation.

10.
Water Res ; 251: 121105, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184913

RESUMO

Microorganisms in wetland groundwater play an essential role in driving global biogeochemical cycles. However, largely due to the dynamics of spatiotemporal surface water-groundwater interaction, the spatiotemporal successions of biogeochemical cycling in wetland groundwater remain poorly delineated. Herein, we investigated the seasonal coevolution of hydrogeochemical variables and microbial functional genes involved in nitrogen, carbon, sulfur, iron, and arsenic cycling in groundwater within a typical wetland, located in Poyang Lake Plain, China. During the dry season, the microbial potentials for dissimilatory nitrate reduction to ammonium and ammonification were dominant, whereas the higher potentials for nitrogen fixation, denitrification, methane metabolism, and carbon fixation were identified in the wet season. A likely biogeochemical hotspot was identified in the area located in the low permeable aquifer near the lake, characterized by reducing conditions and elevated levels of Fe2+ (6.65-17.1 mg/L), NH4+ (0.57-3.98 mg/L), total organic carbon (1.02-1.99 mg/L), and functional genes. In contrast to dry season, higher dissimilarities of functional gene distribution were observed in the wet season. Multivariable statistics further indicated that the connection between the functional gene compositions and hydrogeochemical variables becomes less pronounced as the seasons transition from dry to wet. Despite this transition, Fe2+ remained the dominant driving force on gene distribution during both seasons. Gene-based co-occurrence network displayed reduced interconnectivity among coupled C-N-Fe-S cycles from the dry to the wet season, underpinning a less complex and more destabilizing occurrence pattern. The rising groundwater level may have contributed to a reduction in the stability of functional microbial communities, consequently impacting ecological functions. Our findings shed light on microbial-driven seasonal biogeochemical cycling in wetland groundwater.


Assuntos
Água Subterrânea , Microbiota , Poluentes Químicos da Água , Áreas Alagadas , Estações do Ano , Água Subterrânea/química , Carbono/metabolismo , Poluentes Químicos da Água/análise
11.
ACS Omega ; 9(3): 3078-3091, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284061

RESUMO

Contaminated soil and groundwater can pose significant risks to human health and ecological environments, making the remediation of contaminated sites a pressing and sustained challenge. It is significant to identify key performance indicators and advance environmental management standards of contaminated sites. The traditional study currently focuses on the inflexible collection of related files and displays configurable limitations regarding integrated assessment and in-depth analysis of published standards. In addition, there is a relative lack of research focusing on the analysis of different types of standard documents. Herein, we introduce a cross-systematic retrospective and review for the development of standards of the contaminated sites, including the comprehensive framework, multifaceted analysis, and improved suggestion of soil and groundwater standards related to the environment. The classification and structural characteristics of different types of files are systematically analyzed of over 300 national, trade, local, and group standards for the contaminated sites. It exhibits that trade standards are the main types and testing methods are the important format within numerical considerations of soil standards. The guide standard serves as a crucial component in environmental management for investigating, assessing, and remediating of contaminated sites. Future improvement plans and development directions are proposed for advancing robust technical support for effective soil contamination prevention and control. This multidimensional analysis and the accompanying suggestions can provide improved guidance for Chinese environmental management of contaminated sites and sparkle the application of standards in a wide range of countries.

12.
Sci Total Environ ; 921: 171126, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387574

RESUMO

A growing consensus is reached that microbes contributes to regulating the formation and accumulation of soil organic carbon (SOC). Nevertheless, less is known about the role of soil microbes (necromass, biomass) in SOC accumulation in different habitat conditions in alpine ecosystems. To address this knowledge gap, the composition and distribution of amino sugars (ASs) and phospholipid fatty acids (PLFAs) as biomarkers of microbial necromass and biomass were investigated in forest, meadow and wetland soil profile (0-40 cm) of Mount Segrila, Tibet, China, as well the contribution of bacterial and fungal necromass to SOC. The results revealed that microbial necromass carbon contributed 45.15 %, 72.51 % and 78.08 % on average to SOC in 0-40 cm forest, meadow and wetland soils, respectively, and decreased with microbial biomass. Fungal necromass contributed more to SOC in these habitats than bacterial necromass. Microbial necromass increased with microbial biomass and both of them decreased with soil depth in all habitats. The necromass accumulation coefficient was significantly correlated with microbial necromass and biomass, affected by habitat and soil moisture. Structural equation model indicated that soil abiotic factors indirectly mediated the accumulation of SOC through microbial necromass and biomass. This study revealed that different habitats and soil depths control considerably soil physicochemical properties and microbial community, finally influencing SOC accumulation in alpine ecosystems, which emphasized the influence of abiotic factors on microbial necromass and biomass for SOC accumulation in alpine ecosystems.


Assuntos
Microbiota , Solo , Solo/química , Carbono , Microbiologia do Solo , Biomassa , Bactérias
13.
Bioresour Technol ; 399: 130617, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513923

RESUMO

This study aimed to compare the effect of different phosphate additives including superphosphate (CP) and MP [Mg(OH)2 + H3PO4] on nitrogen conversion, humus fractions formation and bacterial community in food waste compost. The results showed the ratio of humic acid nitrogen in total nitrogen (HA-N/TN) in CP increased by 49 %. Ammonium nitrogen accumulation was increased by 75 % (CP) and 44 % (MP). Spectroscopic techniques proved that phosphate addition facilitated the formation of complex structures in HA. CP enhanced the dominance of Saccharomonospora, while Thermobifida and Bacillus were improved in MP. Structural equation modeling and network analysis demonstrated that ammonium nitrogen can be converted to HA-N and has positive effects on bacterial composition, reducing sugars and amino acids, especially in CP with more clustered network and synergic bacterial interactions. Therefore, the addition of phosphate provides a new idea to regulate the retained nitrogen toward humification in composting.


Assuntos
Compostos de Amônio , Compostagem , Eliminação de Resíduos , Substâncias Húmicas , Fosfatos , Carbono , Nitrogênio/química , Alimentos , Eliminação de Resíduos/métodos , Solo , Bactérias , Esqueleto/química , Esterco
14.
Adv Sci (Weinh) ; 11(13): e2306929, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286671

RESUMO

Loss of E-cadherin (ECAD) is required in tumor metastasis. Protein degradation of ECAD in response to oxidative stress is found in metastasis of hepatocellular carcinoma (HCC) and is independent of transcriptional repression as usually known. Mechanistically, protein kinase A (PKA) senses oxidative stress by redox modification in its ß catalytic subunit (PRKACB) at Cys200 and Cys344. The activation of PKA kinase activity subsequently induces RNF25 phosphorylation at Ser450 to initiate RNF25-catalyzed degradation of ECAD. Functionally, RNF25 repression induces ECAD protein expression and inhibits HCC metastasis in vitro and in vivo. Altogether, these results indicate that RNF25 is a critical regulator of ECAD protein turnover, and PKA is a necessary redox sensor to enable this process. This study provides some mechanistic insight into how oxidative stress-induced ECAD degradation promotes tumor metastasis of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Estresse Oxidativo , Humanos , Caderinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
15.
Front Microbiol ; 15: 1372568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533333

RESUMO

Aeration is an important factor to regulate composting efficiency and nitrogen loss. This study is aimed to compare the effects of different aeration modes (continuous and intermittent) and aeration rate on nitrogen conversion and bacterial community in composting from dehydrated sludge and corn straw. Results showed that the intermittent aeration mode at same aeration volume was superior to the continuous aeration mode in terms of NH3 emission reduction, nitrogen conversion and germination index (GI) improvement. Intermittent aeration mode with 1200 L/h (aeration 5 min, stop 15 min) [K5T15 (V1200)] and 300 L/h of continuous aeration helped to the conservation of nitrogen fractions and accelerate the composting process. However, it was most advantageous to use 150 L/h of continuous aeration to reduce NH3 emission and ensure the effective composting process. The aeration mode K5T15 (V1200) showed the fastest temperature rise, the longer duration of thermophilic stage and the highest GI (95%) in composting. The cumulative NH3 emission of intermittent aeration mode was higher than continuous aeration mode. The cumulative NH3 emission of V300 was 23.1% lower than that of K5T15 (V1200). The dominant phyla in dehydrated sludge and corn straw composting were Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The dominant phylum in the thermophilic stage was Firmicutes (49.39%~63.13%), and the dominant genus was Thermobifida (18.62%~30.16%). The relative abundance of Firmicutes was greater in the intermittent aeration mode (63.13%) than that in the continuous aeration mode (57.62%), and Pseudomonas was dominant in composting with lower aeration rate and the lowest NH3 emission. This study suggested that adjustment to the aeration mode and rate could affect core bacteria to reduce the nitrogen loss and accelerate composting process.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38289551

RESUMO

This study aimed to compare the process of maturity and humus fraction evolution as well as bacterial community dynamics in composting from different domestic organic wastes (food waste (FW), and vegetable waste (VW)) and decipher the key biotic influencing factors of humic acid formation through correlation analysis and ecological network. The results showed that organic carbon components in FW with high ratio of soluble organic carbon and hemicellulose were more easily to be degraded in composting compared to VW. After 30 days of composting, the content of HA-C generated by VW was 35.41%, higher than 29.01% of FW, and the growth rate of HA-C generated was 38.42% and 28.34%, respectively. PARAFAC analysis showed that the structure of HA generated in VW was more complex, and the proportion of humic acid-like components (C3 + C4) was 60.32%, while FW only accounted for 43.86%. However, the evolution growth rate of aromatic components in HA in FW was 26.88% in 30 days of compost, which was higher than 15.17% in VW. High-throughput sequencing indicated that Lactobacillus was the initial dominated genera in composting from different domestic wastes. Thermobifida, Thermovum, and Pusillimas as well as Aeribacillus were core bacterial genera that promoted the humification process in FW and VW, respectively. Network analysis showed that there was higher bacterial interacted connection degree and complexity in FW compared to VW. This study was of great significance for optimizing organics conversion and humification efficiency of household waste composting.

17.
Sci Total Environ ; 933: 173267, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38754504

RESUMO

The aim of this study was to investigate the differential metabolites and core metabolic pathways caused by fungal bioaugmentation (pH regulation and Phanerochaete chrysosporium inoculation) in secondary fermentation of composting, as well as their roles in advancing humification mechanism. Metabolomics analyses showed that inoculation strengthened the expression of carbohydrate, amino acid, and aromatic metabolites, and pH regulation resulted in the up-regulation of the phosphotransferase system and its downstream carbohydrate metabolic pathways, inhibiting Toluene degradation and driving biosynthesis of aromatic amino acids via the Shikimate pathway. Partial least squares path model suggested that lignocellulose degradation, precursors especially amino acids and their metabolism process enhanced by the regulation of pH and Phanerochaete were the main direct factors for humic acid formation in composting. This finding helps to understand the regulating mechanism of fungal bioaugmentation to improve the maturity of agricultural waste composting.


Assuntos
Compostagem , Fermentação , Substâncias Húmicas , Metabolômica , Phanerochaete/metabolismo , Biodegradação Ambiental , Microbiologia do Solo
18.
Imeta ; 1(3): e48, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38868718

RESUMO

The compartment niche is the main reason behind the shifts in endophytic bacterial communities. Long-term organic greenhouse exerted limited influence on the variations of endophytic bacterial communities. Organic greenhouse and root had more complex co-occurrence networks than conventional greenhouse and stem, respectively. Cultivable method results found that Protecbacteria, Bacteriodes, and Actinobacteria are the dominant phyla in the endophytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA