RESUMO
Progress in understanding early human development has been impeded by the scarcity of reference datasets from natural embryos, particularly those with spatial information during crucial stages like gastrulation. We conducted high-resolution spatial transcriptomics profiling on 38,562 spots from 62 transverse sections of an intact Carnegie stage (CS) 8 human embryo. From this spatial transcriptomic dataset, we constructed a 3D model of the CS8 embryo, in which a range of cell subtypes are identified, based on gene expression patterns and positional register, along the anterior-posterior, medial-lateral, and dorsal-ventral axis in the embryo. We further characterized the lineage trajectories of embryonic and extra-embryonic tissues and associated regulons and the regionalization of signaling centers and signaling activities that underpin lineage progression and tissue patterning during gastrulation. Collectively, the findings of this study provide insights into gastrulation and post-gastrulation development of the human embryo.
Assuntos
Embrião de Mamíferos , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Imageamento Tridimensional , Humanos , Embrião de Mamíferos/metabolismo , Transcriptoma/genética , Gástrula/metabolismo , Gástrula/embriologia , Transdução de Sinais , Linhagem da Célula , Perfilação da Expressão Gênica , Padronização Corporal/genéticaRESUMO
Different functional regions of brain are fundamental for basic neurophysiological activities. However, the regional specification remains largely unexplored during human brain development. Here, by combining spatial transcriptomics (scStereo-seq) and scRNA-seq, we built a spatiotemporal developmental atlas of multiple human brain regions from 6-23 gestational weeks (GWs). We discovered that, around GW8, radial glia (RG) cells have displayed regional heterogeneity and specific spatial distribution. Interestingly, we found that the regional heterogeneity of RG subtypes contributed to the subsequent neuronal specification. Specifically, two diencephalon-specific subtypes gave rise to glutamatergic and GABAergic neurons, whereas subtypes in ventral midbrain were associated with the dopaminergic neurons. Similar GABAergic neuronal subtypes were shared between neocortex and diencephalon. Additionally, we revealed that cell-cell interactions between oligodendrocyte precursor cells and GABAergic neurons influenced and promoted neuronal development coupled with regional specification. Altogether, this study provides comprehensive insights into the regional specification in the developing human brain.
Assuntos
Encéfalo , Transcriptoma , Humanos , Neurônios Dopaminérgicos , Neurônios GABAérgicos , Mesencéfalo , Neocórtex , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismoRESUMO
Bergenin is the main active ingredient of Bergenia purpurascens, a medicinal plant which has long been used to treat a variety of Th17 cell-related diseases in China, such as allergic airway inflammation and colitis. This study aimed to uncover the underlying mechanisms by which bergenin impedes Th17 cell response in view of cellular metabolism. In vitro, bergenin treatment reduced the frequency of Th17 cells generated from naïve CD4+ T cells of mice. Mechanistically, bergenin preferentially restrained fatty acid synthesis (FAS) but not other metabolic pathways in differentiating Th17 cells, and exogenous addition of either palmitic acid (PA) or oleic acid (OA) and combination with acetyl-CoA carboxylase 1 (ACC1) activator citric acid dampened the inhibition of bergenin on Th17 cell differentiation. Bergenin inhibited FAS through downregulating the expression of SREBP1 via restriction of histone H3K27 acetylation in the SREBP1 promoter, and SREBP1 overexpression weakened the inhibition of bergenin on Th17 differentiation. Furthermore, bergenin was shown to directly interact with SIRT1 and result in activation of SIRT1. Either combination with SIRT1 inhibitor EX527 or point mutation plasmid of SIRT1 diminished the inhibitory effect of bergenin on FAS and Th17 cell differentiation. Finally, the inhibitory effect of bergenin on Th17 cell response and SIRT1 dependence were verified in mice with dextran sulfate sodium-induced colitis. In short, bergenin repressed Th17 cell response by downregulating FAS via activation of SIRT1, which might find therapeutic use in Th17 cell-related diseases.
Assuntos
Benzopiranos , Diferenciação Celular , Ácidos Graxos , Células Th17 , Animais , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Camundongos , Diferenciação Celular/efeitos dos fármacos , Ácidos Graxos/metabolismo , Benzopiranos/farmacologia , Colite/tratamento farmacológico , Colite/metabolismo , Colite/induzido quimicamente , Camundongos Endogâmicos C57BL , Sirtuína 1/metabolismo , Sirtuína 1/genética , Saxifragaceae/química , Regulação para Baixo/efeitos dos fármacos , MasculinoRESUMO
Vascular endothelial senescence is a major risk factor for diabetic vascular complications. Abnormal mitochondrial fission by dynamically related protein 1 (DRP1) accelerates vascular endothelial cell senescence. Homoplantaginin (Hom) is a flavonoid in Salvia plebeia R. Br. with protecting mitochondrial and repairing vascular properties. However, the relevant mechanism of Hom against diabetic vascular endothelial cell senescence remains unclear. Here, we used db/db mice and high glucose (HG)-treated human umbilical vein endothelial cells (HUVECs) to assess the anti-vascular endothelial cell senescence of Hom. We found that Hom inhibited senescence-associated ß-galactosidase activity, decreased the levels of senescence markers, and senescence-associated secretory phenotype factors. Additionally, Hom inhibited the expression of cGAS-STING pathway and downstream inflammatory factors. STING inhibitor H-151 delayed endothelial senescence, whereas STING overexpression attenuated the anti-endothelial senescence effect of Hom. Furthermore, we observed that Hom reduced mitochondrial fragmentation and inhibited abnormal mitochondrial fission using transmission electron microscopy. Importantly, Hom has a stronger effect on mitochondrial fission protein than mitochondrial fusion protein, especially downregulated the expression of DRP1. DRP1 inhibitor Mdivi-1 suppressed cGAS-STING pathway and vascular endothelial senescence, yet DRP1 agonist FCCP attenuated the effect of Hom. Surprisingly, Hom blunted abnormal mitochondrial fission mediated by DRP1 mitochondrial localization, suppressed interaction of DRP1 with VDAC1 and prevented VDAC1 oligomerization, which was necessary for mtDNA escape and subsequent cGAS-STING pathway activation. These results revealed a previously unrecognized mechanism that Hom alleviated vascular endothelial senescence by inhibited mtDNA-cGAS-STING signaling pathway via blunting DRP1-mitochondrial fission-VDAC1 axis.
Assuntos
Senescência Celular , DNA Mitocondrial , Dinaminas , Glucose , Células Endoteliais da Veia Umbilical Humana , Proteínas de Membrana , Dinâmica Mitocondrial , Nucleotidiltransferases , Transdução de Sinais , Canal de Ânion 1 Dependente de Voltagem , Animais , Senescência Celular/efeitos dos fármacos , Dinaminas/metabolismo , Dinaminas/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Camundongos , Humanos , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Masculino , Camundongos Endogâmicos C57BLRESUMO
OBJECTIVE: To investigate the application value of ultrasound technology in transurethral enucleation and resection of the prostate (TUERP). METHODS: This study included 78 BPH patients admitted in our hospital from June 2021 to June 2023, aged 70.68±8.63 years and with the indication of surgery. We randomly divided them into two groups to receive TUERP (the control group, n = 39) and ultrasound-assisted TUERP (the US-TUERP group, n = 39). We statistically analyzed and compared the relevant parameters obtained before and after operation between the two groups. RESULTS: No statistically significant differences were observed in the operation time and bladder irrigation time between the two groups (P > 0.05). More glandular tissues were removed but less intraoperative bleeding and fewer perioperative complications occurred in the US-TUERP group than in the control. Compared with the baseline, IPSS, postvoid residual urine volume (PVR), quality of life score (QOL) and maximum urinary flow rate (Qmax) were significantly improved in both groups at 1 and 3 months after surgery, even more significantly in the US-TUERP than in the control group (P < 0.05). CONCLUSION: US-TUERP helps achieve complete resection of the hyperplastic prostatic tissue along the surgical capsule at the anatomical level, with a higher safety, fewer perioperative complications, and better therapeutic effects.
Assuntos
Próstata , Hiperplasia Prostática , Ressecção Transuretral da Próstata , Ultrassonografia , Humanos , Masculino , Ressecção Transuretral da Próstata/métodos , Idoso , Hiperplasia Prostática/cirurgia , Próstata/cirurgia , Qualidade de Vida , Resultado do Tratamento , Duração da CirurgiaRESUMO
OBJECTIVES: Adverse cardiovascular events are the leading cause of death in peritoneal dialysis patients. Identifying indicators that can predict adverse cardiovascular events in these patients is crucial for prognosis. This study aims to assess the value of dual-specificity phosphatase 6 (DUSP6) in peripheral blood mononuclear cells as a predictor of adverse cardiovascular events after peritoneal dialysis in diabetic nephropathy patients. METHODS: A total of 124 diabetic nephropathy patients underwent peritoneal dialysis treatment at the Department of Nephrology of the First Affiliated Hospital of Hebei North University from June to September 2022 were selected as study subjects. The levels of DUSP6 in peripheral blood mononuclear cells were determined using Western blotting. Patients were categorized into high-level and low-level DUSP6 groups based on the median DUSP6 level. Differences in body mass index, serum albumin, high-sensitivity C-reactive protein, and dialysis duration were compared between the 2 groups. Pearson, Spearman, and multiple linear regression analyses were performed to examine factors related to DUSP6. Patients were followed up to monitor the occurrence of adverse cardiovascular events, and risk factors for adverse cardiovascular events after peritoneal dialysis were analyzed using Kaplan-Meier and Cox regression. RESULTS: By the end of the follow-up, 33 (26.61%) patients had experienced at least one adverse cardiovascular event. The high-level DUSP6 group had higher body mass index, longer dialysis duration, and higher high-sensitivity C-reactive protein, but lower serum albumin levels compared to the low-level DUSP6 group (all P<0.05). DUSP6 was negatively correlated with serum albumin levels (r=-0.271, P=0.002) and positively correlated with dialysis duration (rs=0.406, P<0.001) and high-sensitivity C-reactive protein (rs=0.367, P<0.001). Multiple linear regression analysis revealed that dialysis duration and high-sensitivity C-reactive protein were independently correlated with DUSP6 levels (both P<0.05). The cumulative incidence of adverse cardiovascular events was higher in the high-level DUSP6 group than in the low-level DUSP6 group (46.67% vs 7.81%, P<0.001). Cox regression analysis indicated that low serum albumin levels (HR=0.836, 95% CI 0.778 to 0.899), high high-sensitivity C-reactive protein (HR=1.409, 95% CI 1.208 to 1.644), and high DUSP6 (HR=6.631, 95% CI 2.352 to 18.693) were independent risk factors for adverse cardiovascular events in peritoneal dialysis patients. CONCLUSIONS: Dialysis duration and high-sensitivity C-reactive protein are independently associated with DUSP6 levels in peripheral blood mononuclear cells of diabetic nephropathy patients undergoing peritoneal dialysis. High DUSP6 levels indicate a higher risk of adverse cardiovascular events.
Assuntos
Doenças Cardiovasculares , Nefropatias Diabéticas , Fosfatase 6 de Especificidade Dupla , Leucócitos Mononucleares , Diálise Peritoneal , Humanos , Diálise Peritoneal/efeitos adversos , Doenças Cardiovasculares/etiologia , Nefropatias Diabéticas/sangue , Fosfatase 6 de Especificidade Dupla/genética , Feminino , Masculino , Leucócitos Mononucleares/metabolismo , Fatores de Risco , Proteína C-Reativa/metabolismo , Pessoa de Meia-Idade , Prognóstico , Albumina Sérica/metabolismo , Albumina Sérica/análiseRESUMO
Several aryl hydrocarbon receptor (AhR) agonists have been reported to promote the generation of regulatory T cells (Treg cells), and the action mechanisms need to be identified. In this study, we addressed the underlying mechanism of AhR activation to induce the generation of Treg cells in the view of cellular metabolism. Naïve CD4+ T cells were purified with mouse CD4+ CD62L+ T Cells Isolation Kits. The proportions of Treg cells were detected by flow cytometry. The value of oxygen consumption rate (OCR) of CD4+ T cells was detected by the Seahorse XFe 96 analyzer. The activation of fatty acid oxidation (FAO)-related metabolic pathways was detected by Western blotting. Intracellular localization of Lkb1 was detected by immunofluorescence. The Strad-Mo25-Lkb1 complex formation and K63 chain ubiquitination modification of Lkb1 were detected by co-immunoprecipitation. The binding of AhR to the Skp2 promoter was detected by constructing luciferase reporter gene. AhR or carnitine palmitoyltransferases 1 was knockdown in dextran sulphate sodium (DSS)-induced colitis or collagen-induced arthritis (CIA) mice by infecting mice with adeno-associated virus via the tail vein injection. Compared to the control group, exogenous and endogenous AhR agonists 3,3'-diindolylmethane (DIM) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) were shown to preferentially upregulate the mRNA expression of FAO-related enzymes and the value of OCR. Consistently, pharmacological or genetic inhibition of FAO markedly diminished the induction of DIM and ITE on the differentiation of Treg cells. DIM and ITE functioned mainly through activating the liver kinase B1 (Lkb1)-AMPK pathway via promotion of Lkb1-Strad-Mo25 complex formation and Lkb1 K63 ubiquitination. DIM and ITE were also shown to upregulate the mRNA expression of Skp2, a ubiquitination-related enzyme, and facilitate the binding of AhR to the xenobiotic responsive element of Skp2 promoter region by luciferase reporter gene assay. Furthermore, the contribution of Skp2/K63 ubiquitination/Lkb1/FAO axis was verified in (DSS)-induced colitis or CIA mice. In summary, these findings indicate that AhR activation promotes Treg cell generation by enhancing Lkb1-mediated FAO via the Skp2/K63-ubiquitination pathway, and AhR agonists may be used as inducers of Treg cells to prevent and treat autoimmune diseases.
Assuntos
Colite , Linfócitos T Reguladores , Camundongos , Animais , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Colite/metabolismo , Ubiquitinação , Ácidos Graxos/metabolismo , RNA MensageiroRESUMO
The shoot apical meristem (SAM), which is formed during embryogenesis, generates leaves, stems, and floral organs during the plant life cycle. SAM development is controlled by SHOOT MERISTEMLESS (STM), a conserved Class I KNOX transcription factor that interacts with another subclass homeodomain protein, BELL, to form a heterodimer, which regulates gene expression at the transcriptional level in Arabidopsis (Arabidopsis thaliana). Meanwhile, SKI-INTERACTING PROTEIN (SKIP), a conserved protein in eukaryotes, works as both a splicing factor and as a transcriptional regulator in plants to control gene expression at the transcriptional and posttranscriptional levels by interacting with distinct partners. Here, we show that, similar to plants with a loss of function of STM, a loss of function of SKIP or the specific knockout of SKIP in the SAM region resulted in failed SAM development and the inability of the mutants to complete their life cycle. In comparison, Arabidopsis mutants that expressed SKIP specifically in the SAM region formed a normal SAM and were able to generate a shoot system, including leaves and floral organs. Further analysis confirmed that SKIP interacts with STM in planta and that SKIP and STM regulate the expression of a similar set of genes by binding to their promoters. In addition, STM also interacts with EARLY FLOWERING 7 (ELF7), a component of Polymerase-Associated Factor 1 complex, and mutation in ELF7 exhibits similar SAM defects to that of STM and SKIP. This work identifies a component of the STM transcriptional complex and reveals the mechanism underlying SKIP-mediated SAM formation in Arabidopsis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Meristema/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Norisoboldine (NOR), an alkaloid isolated from Radix Lindera, was previously reported to promote the differentiation of regulatory T cells (Treg cells), an important subtype of lymphocytes capable of controlling autoimmune diseases. The present study was performed to explore the mechanism of NOR in the view of cellular metabolism. A global metabolomic analysis indicated that NOR preferentially altered the fatty acid oxidation (FAO) pathway and elevated the content of related metabolites during Treg cell differentiation. The detection of oxygen consumption rate (OCR) and mRNA expression of FAO-related enzymes demonstrated that NOR promoted FAO in the early stage of Treg cell differentiation. Consistently, pharmacological or genetic inhibition of FAO markedly diminished the induction of NOR on Treg cell differentiation. Furthermore, NOR was shown to elevate the level of acetyl-CoA derived from FAO and acetylation of lysine 27 on histone 3 (H3K27) at the Foxp3 promoter and CNS2 regions. A knockdown of CPT1, the rate-limiting enzyme of FAO, weakened the promotion of NOR on the development, acetyl-CoA level, and acetylation of H3K27 of Treg cells in vitro and in the mice with collagen-induced arthritis, and attenuated the anti-arthritic effect of NOR. These findings demonstrate that NOR induces the development of Treg cells through promoting FAO, therefore, facilitating gene transcription of Foxp3 via acetyl-CoA-mediated H3K27 acetylation modification, and FAO might serve as a novel target to induce Treg cell development.
Assuntos
Alcaloides/farmacologia , Ácidos Graxos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Histonas/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Acetilação , Animais , Diferenciação Celular/efeitos dos fármacos , Feminino , Fatores de Transcrição Forkhead/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Oxirredução , Regiões Promotoras Genéticas , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/fisiologiaRESUMO
Acute myeloid leukemia (AML) is a heterogeneously malignant disorder resulting in poor prognosis. Ubiquitination, a major post-translational modification (PTM), plays an essential role in regulating various cellular processes and determining cell fate. Despite these initial insights, the precise role of ubiquitination in AML pathogenesis and treatment remains largely unknown. In order to address this knowledge gap, we explore the relationship between ubiquitination and AML from the perspectives of signal transduction, cell differentiation, and cell cycle control; and try to find out how this relationship can be utilized to inform new therapeutic strategies for AML patients.
RESUMO
T helper (Th) 17 cells highly contribute to the immunopathology of rheumatoid arthritis. Morin, a natural flavonoid, owns well anti-arthritic action but unclear effect on Th17 differentiation. This study tried to solve this issue and explore the mechanisms in view of cellular metabolism. Naïve CD4+ T cells were treated with anti-CD3/CD28 along with Th17-inducing cytokines. Morin was shown to block Th17 differentiation without affecting cell viability even when Foxp3 was dampened. The mechanisms were ascribed to the limited fatty acid synthesis by restricting FASN transcription, as indicated by metabolomics analysis, nile red staining, detection of triglycerides, FASN overexpression, and addition of palmitic acid. Moreover, morin had slight effect on cell apoptosis and protein palmitoylation during Th17 differentiation, but blocked the binding of RORγt to promoter and CNS2 region of Il17a gene. Oleic acid rescued the inhibition of morin on RORγt function, and Th17-inducing cytokines could not induce RORγt function in SCD1-defficient cells, suggesting that oleic acid but not palmitic acid was the direct effector in the action of morin. Then, PPARγ was identified as the target of morin, and GW9662 or PPARγ CRISPR/Cas9 KO plasmid weakened its above-mentioned effects. The transrepression of FASN by morin was owing to physical interaction between PPARγ and Sp1, and the importance of Sp1 in Th17 differentiation was confirmed by siSp1. Finally, the effects and mechanisms for morin-dampened Th17 responses were confirmed in collagen-induced arthritis (CIA) mice. Collectively, morin inhibited Th17 differentiation and alleviated CIA by limiting fatty acid synthesis subsequent to PPARγ activation.
Assuntos
Artrite Experimental , Camundongos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/patologia , PPAR gama/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Agonistas PPAR-gama , Ácido Oleico , Diferenciação Celular , Citocinas , Flavonoides/farmacologiaRESUMO
INTRODUCTION: Acute myeloid leukemia (AML) with internal tandem duplication (ITD) mutations in Fms-like tyrosine kinase 3 (FLT3) has an unfavorable prognosis. Recently, using newly emerging inhibitors of FLT3 has led to improved outcomes of patients with FLT3-ITD mutations. However, drug resistance and relapse continue to be significant challenges in the treatment of patients with FLT3-ITD mutations. This study aimed to evaluate the anti-leukemic effects of shikonin (SHK) and its mechanisms of action against AML cells with FLT3-ITD mutations in vitro and in vivo. METHODS: The CCK-8 assay was used to analyze cell viability, and flow cytometry was used to detect cell apoptosis and differentiation. Western blotting and real-time polymerase chain reaction (RT-PCR) were used to examine the expression of certain proteins and genes. Leukemia mouse model was created to evaluate the anti-leukemia effect of SHK against FLT3-ITD mutated leukemia in vivo. RESULTS: After screening a series of leukemia cell lines, those with FLT3-ITD mutations were found to be more sensitive to SHK in terms of proliferation inhibition and apoptosis induction than those without FLT3-ITD mutations. SHK suppresses the expression and phosphorylation of FLT3 receptors and their downstream molecules. Inhibition of the NF-κB/miR-155 pathway is an important mechanism through which SHK kills FLT3-AML cells. Moreover, a low concentration of SHK promotes the differentiation of AML cells with FLT3-ITD mutations. Finally, SHK could significantly inhibit the growth of MV4-11 cells in leukemia bearing mice. CONCLUSION: The findings of this study indicate that SHK is a promising drug for the treatment of FLT3-ITD mutated AML.
RESUMO
OBJECTIVE: Aniline poisoning is considered to be an important factor mediating the development and progression of male bladder cancer,and long non-coding RNA(lncRNA)has also been shown to affect the prognosis of male bladder cancer.Therefore,this study intended to screen and identify lncrnas associated with highly sensitive aniline poisoning of male bladder cancer,and to construct a tumor risk prediction model accordingly. METHODS: Gene expression and clinical data from 410 tissues were downloaded from the Cancer Genome Atlas(TCGA),and all samples were randomly divided into training and testing groups.Lncrnas associated with aniline poisoning were distinguished.We then performed univariate COX and multivariate COX regressions,in parallel with LASSO regression,to establish a lncRNA risk model associated with aniline poisoning.Kaplan-Meier curve,scatterplot,C-index,ROCcurve,nomogram,PCAanalysis,and univariate and multivariate Cox regression were used to test the accuracy of the risk model and predict patient survival. RESULTS: Seven lncrnas associated with aniline poisoning(LINC01184, LINC00513,LINC02443,SMARCA5-AS1,BDNF-AS,SOD2-OT1,HYI-AS1)were screened and identified,and based on this,a risk prediction model with high sensitivity to the malignant progression of bladder cancer was constructed.It is also verified that the model can effectively predict the overall survival(OS)of the test group and the whole cohort at different stages. CONCLUSIONS: We identified 7 lncrnas associated with aniline poisoning and established a novel risk model of lncrnas associated with aniline poisoning,which provides new insights for prognosis assessment and may guide the comprehensive treatment of male bladder cancer.
Assuntos
RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Masculino , Humanos , RNA Longo não Codificante/genética , Neoplasias da Bexiga Urinária/genética , Compostos de Anilina , Nomogramas , PrognósticoRESUMO
Our previous studies have demonstrated that tetrandrine can induce the generation of regulatory T (Treg) cells in vitro and in vivo. But, the underlying mechanism of tetrandrine remains obscure. Naïve CD4+ T cells are isolated from the mesenteric lymph nodes of mice for the differentiation of Treg cells. Flow cytometry is used to detect the frequencies of Treg cells. Non-targeted metabolomics analysis based on UHPLC-QTOF/MS is performed to assess the intracellular metabolic profiles. ChIP-PCR analysis is conducted to detect the level of H3K27ac at Foxp3 promoter and CNS regions. Tetrandrine treatment alters the metabolic profile of Treg cells, and pathway enrichment of differential metabolites mainly involves fatty acid oxidation (FAO). Tetrandrine promotes the mRNA expression of carnitine palmitoyl transferase-1, and increases the level of acetyl coenzyme A (acetyl-CoA) and the intracellular oxygen consumption rate. Either CPT1 inhibitor (etomoxir) or siRNA markedly diminishes the promotion of tetrandrine on Treg cell differentiation. Furthermore, tetrandrine enhances the acetylation of H3K27 in the promoter and CNS1 regions of Foxp3 through the acetyl-CoA derived from FAO. In the mice with collagen-induced arthritis, tetrandrine also induces Treg cell generation through FAO pathway. In addition, tetrandrine enhances the immunosuppressive function of Treg cells both in vitro and in vivo. The findings indicate that tetrandrine promotes Treg cell differentiation by enhancing FAO-mediated Foxp3 acetylation, and the CPT1-mediated FAO can serve as the target for the discovery of novel inducers of Treg cell generation.
Assuntos
Alcaloides , Antineoplásicos , Acetilcoenzima A/metabolismo , Alcaloides/metabolismo , Animais , Benzilisoquinolinas , Ácidos Graxos/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Imunossupressores/farmacologia , Camundongos , Linfócitos T Reguladores/metabolismoRESUMO
The elevated intestinal permeability due to mucosal barrier defects is not only secondary to inflammatory bowel disease but also precedes enteritis. Tetrandrine, a bisbenzyl isoquinoline alkaloid isolated from the dried roots of Stephamis tetlandra S. Moor, was previously demonstrated to ameliorate colitis induced by dextran sulfate sodium (DSS) in mice. Here, we investigate whether and how tetrandrine protects against the disruption of the intestinal epithelial barrier under colitis condition. The data show that oral administration of tetrandrine significantly counteracted the increase of intestinal permeability in DSS-treated mice, enhanced the mRNA and protein expression of Occludin and Claudin1 in the colon, but hardly affected the expression of ZO-1 and Mucin2. In vitro, tetrandrine treatment rescued the decrease of monolayer transmembrane resistance and the increase of epithelial cell permeability induced by TNF-α, upregulated the expression of Occludin, and downregulated the expression of Claudin1 but did not affect the expression of ZO-1. The siRNA of Occludin largely weakened the protective effect of tetrandrine on the epithelial barrier function in Caco-2 cells. MiR-429 mimic obviously counteracted the upregulation of tetrandrine on the expression of Occludin and the amelioration on epithelial barrier defects, in contrast, miR-429 inhibitor showed the opposite effects. The antagonist (CH223191) and siAhR of aryl hydrocarbon receptor (AhR) nearly completely diminished the effects of tetrandrine, including inhibition of the miR429 expression, the upregulation of Occludin expression, and amelioration of intestinal epithelial barrier defects in Caco-2 cells. In colitis mice, CH223191 significantly weakened the protective effect of tetrandrine on colitis and intestinal mucosal barrier and diminished the downregulation on miR-429 expression and the promotion on Occludin expression in the colon. In summary, tetrandrine can attenuate the intestinal epithelial barrier defects in colitis through promoting Occludin expression via the AhR/miR-429 pathway, and it might be used to treat colitis as a barrier protector.
Assuntos
Benzilisoquinolinas/farmacologia , Colite/complicações , Enteropatias/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , MicroRNAs/genética , Ocludina/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/toxicidade , Feminino , Regulação da Expressão Gênica , Humanos , Enteropatias/etiologia , Enteropatias/metabolismo , Enteropatias/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ocludina/genética , Permeabilidade , Receptores de Hidrocarboneto Arílico/genéticaRESUMO
BACKGROUND: Peroxisome proliferator-activated receptor gamma (PPARγ) is an enhancer of Treg responses, but the mechanisms remain elusive. This study aimed to solve this problem in view of cellular metabolism. METHODS: Three recognized PPARγ agonists (synthetic agonist: rosiglitazone; endogenous ligand: 15d-PGJ2; natural product: morin) were used as the tools to activate PPARγ. The fatty acid oxidation (FAO) was evaluated through the detection of fatty acid uptake, oxygen consumption rate, mitochondrial mass, mitochondrial membrane potential and acetyl-CoA level. The involvement of UDP-GlcNAc/N-linked glycosylation axis and the exact role of PPARγ in the action of PPARγ agonists were determined by flow cytometry, Q-PCR, western blotting, a commercial kit for enzyme activity and CRISPR/Cas9-mediated knockout. RESULTS: Rosiglitazone, 15d-PGJ2 and morin all increased the frequency of CD4+Foxp3+ Treg cells generated from naïve CD4+ T cells, boosted the transcription of Foxp3, IL-10, CTLA4 and TIGIT, and facilitated the function of Treg cells. They significantly promoted FAO in differentiating Treg cells by up-regulating the levels of CD36 and CPT1 but not other enzymes involved in FAO such as ACADL, ACADM, HADHA or HADHB, and siCD36 or siCPT1 dampened PPARγ agonists-promoted Treg responses. Moreover, PPARγ agonists enhanced UDP-GlcNAc biosynthesis and subsequent N-linked glycosylation, but did not affect the expressions of N-glycan branching enzymes Mgat1, 2, 4 and 5. Notably, the enzyme activity of phosphofructokinase (PFK) was inhibited by PPARγ agonists and the effect was limited by siCD36 or siCPT1, implying PFK to be a link between PPARγ agonists-promoted FAO and UDP-GlcNAc biosynthesis aside from acetyl-CoA. Furthermore, PPARγ agonists facilitated the cell surface abundance of TßRII and IL-2Rα via N-linked glycosylation, thereby activating TGF-ß/Smads and IL-2/STAT5 signaling, and the connection between N-linked glycosylation and Treg responses was revealed by tunicamycin. However, the increased surface abundance of CD36 was demonstrated to be mainly owing to PPARγ agonists-up-regulated overall expression. Finally, PPARγ antagonist GW9662 or CRISPR/Cas9-mediated knockout of PPARγ constrained the effects of rosiglitazone, 15d-PGJ2 and morin, confirming the exact role of PPARγ. CONCLUSIONS: The activation of PPARγ enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid oxidation and subsequent N-glycan branching of TßRII/IL-2Rα, which is beneficial for inflammatory and autoimmune diseases. Video Abstract.
Assuntos
PPAR gama , Linfócitos T Reguladores , Acetilcoenzima A/metabolismo , Antígenos CD36 , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Polissacarídeos , Rosiglitazona/farmacologia , Difosfato de UridinaRESUMO
Bergenin is a natural PPARγ agonist that can prevent neutrophil aggregation, and often be used in clinics for treating respiratory diseases. Recent data show that Th17 cells are important for neutrophil aggregation and asthma through secreting IL-17A. In this study, we investigated the effects of bergenin on Th17 differentiation in vitro and subsequent neutrophilic asthma in mice. Naïve T cells isolated from mouse mesenteric lymph nodes were treated with IL-23, TGF-ß, and IL-6 to induce Th17 differentiation. We showed that in naïve T cells under Th17-polarizing condition, the addition of bergenin (3, 10, 30 µM) concentration-dependently decreased the percentage of CD4+ IL-17A+ T cells and mRNA expression of specific transcription factor RORγt, and function-related factors IL-17A/F, IL-21, and IL-22, but did not affect the cell vitality and apoptosis. Furthermore, bergenin treatment prevented GLS1-dependent glutaminolysis in the progress of Th17 differentiation, slightly affected the levels of SLC1A5, SLC38A1, GLUD1, GOT1, and GPT2. Glutamine deprivation, the addition of glutamate (1 mM), α-ketoglutarate (1 mM), or GLS1 plasmid all significantly attenuated the above-mentioned actions of bergenin. Besides, we demonstrated that bergenin (3, 10, and 30 µM) concentration-dependently activated PPARγ in naïve T cells, whereas PPARγ antagonist GW9662 and siPPARγ abolished bergenin-caused inhibition on glutaminolysis and Th17 differentiation. Furthermore, we revealed that bergenin inhibited glutaminolysis by regulating the level of CDK1, phosphorylation and degradation of Cdh1, and APC/C-Cdh1-mediated ubiquitin-proteasomal degradation of GLS1 after activating PPARγ. We demonstrated a correlation existing among bergenin-affected GLS1-dependent glutaminolysis, PPARγ, "CDK1-APC/C-Cdh1" signaling, and Th17 differentiation. Finally, the therapeutic effect and mechanisms for bergenin-inhibited Th17 responses and neutrophilic asthma were confirmed in a mouse model of neutrophilic asthma by administration of GW9662 or GLS1 overexpression plasmid in vivo. In conclusion, bergenin repressed Th17 differentiation and then alleviated neutrophilic asthma in mice by inhibiting GLS1-dependent glutaminolysis via regulating the "CDK1-APC/C-Cdh1" signaling after activating PPARγ.
Assuntos
Asma , Células Th17 , Animais , Asma/tratamento farmacológico , Asma/patologia , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Diferenciação Celular , Glutaminase , Camundongos , PPAR gama/metabolismoRESUMO
Intestinal mucus barrier dysfunction is closely involved in the pathogenesis of inflammatory bowel diseases (IBD). To investigate the protective effect and underlying mechanism of arctigenin, a phytoestrogen isolated from the fruits of Arctium lappa L., on the intestinal mucus barrier under colitis condition. The role of arctigenin on the intestinal mucus barrier and the apoptosis of goblet cells were examined by using both in vitro and in vivo assays. Arctigenin was demonstrated to promote the mucus secretion and maintain the integrity of mucus barrier, which might be achieved by an increase in the number of goblet cells via inhibiting apoptosis. Arctigenin selectively inhibited the mitochondrial pathway-mediated apoptosis. Moreover, arctigenin elevated the protein level of prohibitin 1 (PHB1) through blocking the ubiquitination via activation of estrogen receptor ß (ERß) to competitively interact with PHB1 and disrupt the binding of tripartite motif 21 (TRIM21) with PHB1. ERß knock down in the colons of mice with DSS-induced colitis resulted in significant reduction of the protection of arctigenin and DPN against the mucosal barrier. Arctigenin can maintain the integrity of the mucus barrier by inhibiting the apoptosis of goblet cells through the ERß/TRIM21/PHB1 pathway.
Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Apoptose , Colite/induzido quimicamente , Receptor beta de Estrogênio/metabolismo , Furanos , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Lignanas , Camundongos , Camundongos Endogâmicos C57BL , Muco/metabolismo , Fitoestrógenos , ProibitinasRESUMO
Intestinal epithelial barrier dysfunction is deeply involved in the pathogenesis of inflammatory bowel diseases (IBD). Arctigenin, the main active constituent in Fructus Arctii (a traditional Chinese medicine), has previously been found to attenuate colitis induced by dextran sulfate sodium (DSS) in mice. The present study investigated whether and how arctigenin protects against the disruption of the intestinal epithelial barrier in IBD. Arctigenin maintained the intestinal epithelial barrier function of mice with DSS- and TNBS-induced colitis. In Caco-2 and HT-29 cells, arctigenin lowered the monolayer permeability, increased TEER, reversed the abnormal expression of tight junction proteins, and restored the altered localization of F-actin induced by TNF-α and IL-1ß. The specific antagonist PHTPP or shRNA of ERß largely weakened the protective effect of arctigenin on the epithelial barrier function of Caco-2 and HT-29 cells. Molecular docking demonstrated that arctigenin had high affinity for ERß mainly through hydrogen bonds as well as hydrophobic effects, and the protective effect of arctigenin on the intestinal barrier function was largely diminished in ERß-mutated (ARG346 and/or GLU305) Caco-2 cells. Moreover, arctigenin-blocked TNF-α induced increase of the monolayer permeability in Caco-2 and HT-29 cells and the activation of myosin light chain kinase (MLCK)/myosin light chain (MLC) pathway in an ERß-dependent manner. ERß deletion in colons of mice with DSS-induced colitis resulted in a significant attenuation of the protective effect of arctigenin on the barrier integrity and colon inflammation. Arctigenin maintained the integrity of the intestinal epithelial barrier under IBD by upregulating the expression of tight junction proteins through the ERß-MLCK/MLC pathway.
Assuntos
Receptor beta de Estrogênio/agonistas , Furanos/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Lignanas/farmacologia , Animais , Células CACO-2 , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Células HT29 , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação de Sentido Incorreto , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
In this study, we used chemical modification to improve the pharmacological activity of norisoboldine (NOR). A new NOR-benzoic acid derivative, named DC-01, showed more potent induction of Treg cell differentiation than NOR. The in vitro effective concentration of DC-01 (1 µM) is about an order of magnitude lower than that of NOR (10 µM). DC-01 (28, 56 mg/kg) showed better amelioration of dextran sodium sulfate-induced colitis in mice than NOR (20, 40 mg/kg), and DC-01 (28 mg/kg) increased the number of Treg cells slightly better than NOR (20 mg/kg). In summary, DC-01 exerts more potent induction of Treg cell generation, which might be a candidate drug for the treatment of inflammation- and immune-related diseases.