Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biol Chem ; 399(12): 1363-1374, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30044755

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that binds and escorts the low density lipoprotein receptor (LDLR) into the lysosomal degradation pathway. Prescribed monoclonal antibodies (mAbs) against PCSK9 prevent its binding to the LDLR, and result in ~60% lower LDL cholesterol (LDLc) levels. Although efficient, mAbs are expensive. Hence other PCSK9 inhibitors are needed. For screening purpose, we developed C57BL/6J mice expressing the human PCSK9 gene under the control of its own promoter, but lacking endogenous mouse PCSK9. All lines recapitulate the endogenous PCSK9 expression pattern. The Tg2 line that expresses physiological levels of human PCSK9 (hPCSK9) was selected to characterize the inhibitory properties of a previously reported single domain antibody (sdAb), PKF8-mFc, which binds the C-terminal domain of PCSK9. Upon intraveinous injection of 10 mg/kg, PKF8-mFc and the mAb evolocumab neutralized ~50% and 100% of the hPCSK9 impact on total cholesterol (TC) levels, respectively, but PKF8-mFc had a more sustained effect. PKF8-mFc barely affected hPCSK9 levels, whereas evolocumab promoted a 4-fold increase 3 days post-injection, suggesting very different inhibitory mechanisms. The present study also shows that the new transgenic mice are well suited to screen a variety of hPCSK9 inhibitors.


Assuntos
Anticorpos Monoclonais/farmacologia , Cisteína/antagonistas & inibidores , Histidina/antagonistas & inibidores , Inibidores de PCSK9 , Animais , Anticorpos Monoclonais Humanizados , Cisteína/metabolismo , Genótipo , Histidina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pró-Proteína Convertase 9/deficiência , Pró-Proteína Convertase 9/metabolismo
2.
J Biol Chem ; 291(32): 16659-71, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27284008

RESUMO

Single domain antibodies (sdAbs) correspond to the antigen-binding domains of camelid antibodies. They have the same antigen-binding properties and specificity as monoclonal antibodies (mAbs) but are easier and cheaper to produce. We report here the development of sdAbs targeting human PCSK9 (proprotein convertase subtilisin/kexin type 9) as an alternative to anti-PCSK9 mAbs. After immunizing a llama with human PCSK9, we selected four sdAbs that bind PCSK9 with a high affinity and produced them as fusion proteins with a mouse Fc. All four sdAb-Fcs recognize the C-terminal Cys-His-rich domain of PCSK9. We performed multiple cellular assays and demonstrated that the selected sdAbs efficiently blocked PCSK9-mediated low density lipoprotein receptor (LDLR) degradation in cell lines, in human hepatocytes, and in mouse primary hepatocytes. We further showed that the sdAb-Fcs do not affect binding of PCSK9 to the LDLR but rather block its induced cellular LDLR degradation. Pcsk9 knock-out mice expressing a human bacterial artificial chromosome (BAC) transgene were generated, resulting in plasma levels of ∼300 ng/ml human PCSK9. Mice were singly or doubly injected with the best sdAb-Fc and analyzed at day 4 or 11, respectively. After 4 days, mice exhibited a 32 and 44% decrease in the levels of total cholesterol and apolipoprotein B and ∼1.8-fold higher liver LDLR protein levels. At 11 days, the equivalent values were 24 and 46% and ∼2.3-fold higher LDLR proteins. These data constitute a proof-of-principle for the future usage of sdAbs as PCSK9-targeting drugs that can efficiently reduce LDL-cholesterol, and as tools to study the Cys-His-rich domain-dependent sorting the PCSK9-LDLR complex to lysosomes.


Assuntos
LDL-Colesterol/metabolismo , Pró-Proteína Convertase 9/metabolismo , Proteólise/efeitos dos fármacos , Receptores de LDL/metabolismo , Anticorpos de Domínio Único/farmacologia , Animais , LDL-Colesterol/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Inibidores de PCSK9 , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética
4.
J Cell Biol ; 212(3): 321-34, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811423

RESUMO

The organization of the genome is nonrandom and important for correct function. Specifically, the nuclear envelope plays a critical role in gene regulation. It generally constitutes a repressive environment, but several genes, including the GAL locus in budding yeast, are recruited to the nuclear periphery on activation. Here, we combine imaging and computational modeling to ask how the association of a single gene locus with the nuclear envelope influences the surrounding chromosome architecture. Systematic analysis of an entire yeast chromosome establishes that peripheral recruitment of the GAL locus is part of a large-scale rearrangement that shifts many chromosomal regions closer to the nuclear envelope. This process is likely caused by the presence of several independent anchoring points. To identify novel factors required for peripheral anchoring, we performed a genome-wide screen and demonstrated that the histone acetyltransferase SAGA and the activity of histone deacetylases are needed for this extensive gene recruitment to the nuclear periphery.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , Cromossomos Fúngicos/ultraestrutura , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Loci Gênicos , Membrana Nuclear/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , Simulação por Computador , Galactoquinase/genética , Galactoquinase/metabolismo , Galactose/metabolismo , Biblioteca Gênica , Glucose/metabolismo , Histona Desacetilases/metabolismo , Modelos Genéticos , Membrana Nuclear/metabolismo , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA