RESUMO
During parasite infections, the liver may prioritise immune-related pathways over its metabolic functions. Intestinal infections caused by Ascaridia galli and Heterakis gallinarum impair feed intake, nutrient absorption, and weight gain. Histomonas meleagridis, vectored by H. gallinarum, can also damage liver tissues, potentially impairing liver functions. This study examined the hepatic gene expression in three strains of chickens: Ross-308 (R), Lohmann Brown Plus (LB), and Lohmann Dual (LD), 2 weeks after an experimental infection (n = 18) with both A. galli and H. gallinarum or kept as uninfected control (n = 12). Furthermore, H. gallinarum infection led to a co-infection with H. meleagridis. The mixed infections reduced feed intake and the average daily weight gain (P < 0.001). The infections also increased the plasma concentrations of alpha (1)-acid glycoprotein and the antibody titre against H. meleagridis (P = 0.049), with no strain differences (P > 0.05). For host molecular response, 1887 genes were differentially expressed in LD, while 275 and 25 genes were differentially expressed in R and LB, respectively. The up-regulated genes in R and LD were mostly related to inflammatory and adaptive immune responses, while down-regulated genes in LD were involved in metabolic pathways, including gluconeogenesis. Despite performance differences among the strains, worm burdens were similar, but hepatic molecular responses differed significantly. Moreover, there was an indication of a shift in hepatic functions towards immune-related pathways. We, therefore, conclude that the liver shifts its functions from metabolic to immune-related activities in chickens when challenged with mixed parasite species.
Assuntos
Galinhas , Fígado , Doenças das Aves Domésticas , Animais , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/imunologia , Fígado/parasitologia , Fígado/metabolismo , Coinfecção/veterinária , Coinfecção/parasitologia , Coinfecção/imunologia , Perfilação da Expressão Gênica/veterinária , Transcriptoma , Regulação da Expressão GênicaRESUMO
Long non-coding RNAs (lncRNAs) hold gene regulatory potential, but require substantial further functional annotation in livestock. Applying two metabogenomic approaches by combining transcriptomic and metabolomic analyses, we aimed to identify lncRNAs with potential regulatory function for divergent nutrient partitioning of lactating crossbred cows and to establish metabogenomic interaction networks comprising metabolites, genes and lncRNAs. Through correlation analysis of lncRNA expression with transcriptomic and metabolomic data, we unraveled lncRNAs that have a putative regulatory role in energy and lipid metabolism, the urea and tricarboxylic acid cycles, and gluconeogenesis. Especially FGF21, which correlated with a plentitude of differentially expressed genes, differentially abundant metabolites, as well as lncRNAs, suggested itself as a key metabolic regulator. Notably, lncRNAs in close physical proximity to coding-genes as well as lncRNAs with natural antisense transcripts appear to perform a fine-tuning function in gene expression involved in metabolic pathways associated with different nutrient partitioning phenotypes.
Assuntos
RNA Longo não Codificante , Animais , Bovinos , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Lactação , Fígado/metabolismo , Nutrientes , Fenótipo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
High ambient temperature has multiple potential effects on the organism such as hyperthermia, endotoxemia, and/or systemic inflammation. However, it is often difficult to discriminate between cause and consequence of phenotypic effects, such as the indirect influence of heat stress via reduced food intake. Lactating dairy cows are a particularly sensitive model to examine the effects of heat stress due to their intensive metabolic heat production and small surface:volume ratio. Results from this model show heat stress directly induced a so-far unknown infiltration of yet uncategorized cells into the mucosa and submucosa of the jejunum. Due to a pair-feeding design, we can exclude this effect being a consequence of the concurrent heat-induced reduction in feed intake. Isolation and characterization of the infiltrating cells using laser capture microdissection and RNA sequencing indicated a myeloic origin and macrophage-like phenotype. Furthermore, targeted transcriptome analyses provided evidence of activated immune- and phagocytosis-related pathways with LPS and cytokines as upstream regulators directly associated with heat stress. Finally, we obtained indication that heat stress may directly alter jejunal tight junction proteins suggesting an impaired intestinal barrier. The penetration of toxic and bacterial compounds during heat stress may have triggered a modulated immune repertoire and induced an antioxidative defense mechanism to maintain homeostasis between commensal bacteria and the jejunal immune system. Our bovine model indicates direct effects of heat stress on the jejunum of mammals already at moderately elevated ambient temperature. These results need to be considered when developing concepts to combat the negative consequences of heat stress.
Assuntos
Resposta ao Choque Térmico/imunologia , Resposta ao Choque Térmico/fisiologia , Jejuno/imunologia , Jejuno/fisiologia , Animais , Bovinos , Feminino , Transtornos de Estresse por Calor/imunologia , Transtornos de Estresse por Calor/fisiopatologia , Temperatura Alta , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Jejuno/metabolismo , Lactação/imunologia , Lactação/metabolismo , Lactação/fisiologia , Proteínas de Junções Íntimas/imunologia , Proteínas de Junções Íntimas/metabolismoRESUMO
BACKGROUND: Tetradysmelia is a rare genetic disorder that is characterized by an extremely severe reduction of all limb parts distal of the scapula and pelvic girdle. We studied a Holstein Friesian backcross family with 24 offspring, among which six calves displayed autosomal recessive tetradysmelia. In order to identify the genetic basis of the disorder, we genotyped three affected calves, five dams and nine unaffected siblings using a Bovine Illumina 50 k BeadChip and sequenced the whole genome of the sire. RESULTS: Pathological examination of four tetradysmelia cases revealed a uniform and severe dysmelia of all limbs. Applying a homozygosity mapping approach, we identified a homozygous region of 10.54 Mb on chromosome 14 (Bos taurus BTA14). Only calves that were diagnosed with tetradysmelia shared a distinct homozygous haplotype for this region. We sequenced the whole genome of the cases' sire and searched for heterozygous single nucleotide polymorphisms (SNPs) and small variants on BTA14 that were uniquely present in the sire and absent from 3102 control whole-genome sequences of the 1000 Bull Genomes Project, but none were identified in the 10.54-Mb candidate region on BTA14. Therefore, we subsequently performed a more comprehensive analysis by also considering structural variants and detected a 50-kb deletion in the targeted chromosomal region that was in the heterozygous state in the cases' sire. Using PCR, we confirmed that this detected deletion segregated perfectly within the family with tetradysmelia. The deletion spanned three exons of the bovine R-spondin 2 (RSPO2) gene, which encode three domains of the respective protein. R-spondin 2 is a secreted ligand of leucine-rich repeats containing G protein-coupled receptors that enhance Wnt signalling and is involved in a broad range of developmental processes during embryogenesis. CONCLUSIONS: We identified a 50-kb deletion on BTA14 that disrupts the coding sequence of the RSPO2 gene and is associated with bovine tetradysmelia. To our knowledge, this is the first reported candidate causal mutation for tetradysmelia in a large animal model. Since signalling pathways involved in limb development are conserved across species, the observed inherited defect may serve as a model to further elucidate fundamental pathways of limb development.
Assuntos
Doenças dos Bovinos/genética , Bovinos/genética , Deleção de Genes , Deformidades Congênitas dos Membros/veterinária , Trombospondinas/genética , Animais , Doenças dos Bovinos/patologia , Cromossomos/genética , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/patologiaRESUMO
Long non-coding RNAs (lncRNAs) can influence transcriptional and translational processes in mammalian cells and are associated with various developmental, physiological and phenotypic conditions. However, they remain poorly understood and annotated in livestock species. We combined phenotypic, metabolomics and liver transcriptomic data of bulls divergent for residual feed intake (RFI) and fat accretion. Based on a project-specific transcriptome annotation for the bovine reference genome ARS-UCD.1.2 and multiple-tissue total RNA sequencing data, we predicted 3590 loci to be lncRNAs. To identify lncRNAs with potential regulatory influence on phenotype and gene expression, we applied the regulatory impact factor algorithm on a functionally prioritized set of loci (n = 4666). Applying the algorithm of partial correlation and information theory, significant and independent pairwise correlations were calculated and co-expression networks were established, including plasma metabolites correlated with lncRNAs. The network hub lncRNAs were assessed for potential cis-actions and subjected to biological pathway enrichment analyses. Our results reveal a prevalence of antisense lncRNAs positively correlated with adjacent protein-coding genes and suggest their participation in mitochondrial function, acute phase response signalling, TCA-cycle, fatty acid ß-oxidation and presumably gluconeogenesis. These antisense lncRNAs indicate a stabilizing function for their cis-correlated genes and a putative regulatory role in gene expression.
Assuntos
Fenômenos Fisiológicos da Nutrição Animal/genética , Bovinos/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , Animais , Bovinos/fisiologia , Redes Reguladoras de Genes , Gluconeogênese , Fígado/metabolismo , Masculino , Mitocôndrias Hepáticas/metabolismo , Característica Quantitativa Herdável , RNA Antissenso/metabolismo , RNA Longo não Codificante/metabolismoRESUMO
BACKGROUND: In the mammary gland transcriptome of lactating dairy cows genes encoding milk proteins are highly abundant, which can impair the detection of lowly expressed transcripts and can bias the outcome in global transcriptome analyses. Therefore, the aim of this study was to develop and evaluate a method to deplete extremely highly expressed transcripts in mRNA from lactating mammary gland tissue. RESULTS: Selective RNA depletion was performed by hybridization of antisense oligonucleotides targeting genes encoding the caseins (CSN1S1, CSN1S2, CSN2 and CSN3) and whey proteins (LALBA and PAEP) within total RNA followed by RNase H-mediated elimination of the respective transcripts. The effect of the RNA depletion procedure was monitored by RNA sequencing analysis comparing depleted and non-depleted RNA samples from Escherichia coli (E. coli) challenged and non-challenged udder tissue of lactating cows in a proof of principle experiment. Using RNase H-mediated RNA depletion, the ratio of highly abundant milk protein gene transcripts was reduced in all depleted samples by an average of more than 50% compared to the non-depleted samples. Furthermore, the sensitivity for discovering transcripts with marginal expression levels and transcripts not yet annotated was improved. Finally, the sensitivity to detect significantly differentially expressed transcripts between non-challenged and challenged udder tissue was increased without leading to an inadvertent bias in the pathogen challenge-associated biological signaling pathway patterns. CONCLUSIONS: The implementation of selective RNase H-mediated RNA depletion of milk protein gene transcripts from the mammary gland transcriptome of lactating cows will be highly beneficial to establish comprehensive transcript catalogues of the tissue that better reflects its transcriptome complexity.
Assuntos
Glândulas Mamárias Animais/metabolismo , Proteínas do Leite/genética , Leite/química , Interferência de RNA , Ribonuclease H/metabolismo , Transcriptoma , Animais , Bovinos , Escherichia coli/genética , Feminino , Lactação , Glândulas Mamárias Animais/crescimento & desenvolvimento , Proteínas do Leite/metabolismoRESUMO
To investigate the dynamics of circRNA expression in pig testes, we designed specific strategies to individually study circRNA production from intron lariats and circRNAs originating from back-splicing of two exons. By applying these methods on seven Total-RNA-seq datasets sampled during the testicular puberty, we detected 126 introns in 114 genes able to produce circRNAs and 5,236 exonic circRNAs produced by 2,516 genes. Comparing our RNA-seq datasets to datasets from the literature (embryonic cortex and postnatal muscle stages) revealed highly abundant intronic and exonic circRNAs in one sample each in pubertal testis and embryonic cortex, respectively. This abundance was due to higher production of circRNA by the same genes in comparison to other testis samples, rather than to the recruitment of new genes. No global relationship between circRNA and mRNA production was found. We propose ExoCirc-9244 (SMARCA5) as a marker of a particular stage in testis, which is characterized by a very low plasma estradiol level and a high abundance of circRNA in testis. We hypothesize that the abundance of testicular circRNA is associated with an abrupt switch of the cellular process to overcome a particular challenge that may have arisen in the early stages of steroid production. We also hypothesize that, in certain circumstances, isoforms and circular transcripts from different genes share functions and that a global regulation of circRNA production is established. Our data indicate that this massive production of circRNAs is much more related to the structure of the genes generating circRNAs than to their function. Abbreviations: PE: Paired Ends; CR: chimeric Read; SR: Split Read; circRNA: circular RNA; NC: non conventional; ExoCirc-RNA: exonic circular RNA; IntroLCirc-: name of a porcine intronic lariat circRNA; ExoCirc-: name of a porcine exonic circRNA; IntronCircle-: name of a porcine intron circle; sisRNA: stable intronic sequence RNA; P: porcine breed Pietrain; LW: porcine breed Large White; RT: reverse transcription/reverse transcriptase; Total-RNA-seq: RNA-seq obtained from total RNA after ribosomal depletion; mRNA-seq: RNA-seq of poly(A) transcripts; TPM: transcripts per million; CR-PM: chimeric reads per million; RBP: RNA binding protein; miRNA: micro RNA; E2: estradiol; DHT: dihydrotestesterone.
Assuntos
Regulação da Expressão Gênica , RNA Circular/genética , Suínos/genética , Transcriptoma/genética , Animais , Embrião de Mamíferos/metabolismo , Éxons/genética , Íntrons/genética , Masculino , Músculos/metabolismo , RNA Circular/metabolismo , Reprodutibilidade dos Testes , Suínos/embriologia , Testículo/metabolismoRESUMO
Adequate metabolic adaptation of key tissues playing an essential role for bioenergetic homeostasis and lactogenesis is critical in cows to adapt to changes in energy requirements and physiological processes during the lactation period. Mitochondria are recognized as central to meet energy needs and maintaining of metabolic homeostasis because mitochondrial DNA (mtDNA) is template for several polypeptides of the respiratory chain complexes essential for ATP generation. The quantity of mtDNA in a cell has been widely used as a surrogate marker for the capacity of cells for energy generation. In our study we analyzed the mtDNA copy number and the mRNA expression of important nuclear encoded genes controlling mitochondrial biogenesis in liver and mammary gland. We compared cows with a nuclear genome dairy × beef crossbred make-up to purebred German Holstein dairy cows. The study revealed tissue-specific variations of mtDNA copy number and expression levels of nuclear genes involved in mitochondrial biogenesis when comparing lactating cows with different genetic predisposition regarding milk performance. This may reflect nuclear genome-determined genetic differences between the cow groups in coping with metabolic demands and physiological changes during lactation. The results indicate that mitochondrial biogenesis processes in the liver and mammary gland appear to be impaired in high lactating dairy cows, which consequently, would point to a disturbed energy adaptation. The results provide a basis to further elucidate the adaptive and regulatory modulation of the mitochondrial biogenesis in response to lactation-associated metabolic challenges in lactating cows.
Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Glândulas Mamárias Animais/metabolismo , Mitocôndrias Hepáticas/genética , Mitocôndrias/metabolismo , Locos de Características Quantitativas , Animais , Cruzamento , Bovinos , Feminino , Variação Genética , Lactação , Leite/metabolismo , Especificidade de ÓrgãosRESUMO
Usually, reads from transcriptome sequencing data unmapped to the target species' reference genome are disregarded. A recent RNAseq project on the new fatal disease Bovine Neonatal Pancytopenia had indicated an unexplained immune response signature to a double-stranded RNA virus. To unravel its background, contigs were de novo assembled from unmapped RNAseq reads and aligned against the bovine genome assemblies and multispecies NCBI databases. Lack of genuine virus sequence contigs rejected the hypothesis of a live virus being causal for the unexplained immune response. Alignment data also demonstrated incomplete bovine reference genome assemblies. In addition, we found that several parasite and virus genome reference assemblies in NCBI were contaminated with bovine DNA and confirmed recombination of bovine DNA into BVD virus strains. Exploring unmapped reads can extract useful biological information regarding the presence of microorganisms and can highlight issues with reference genome assemblies of host and pathogen species.
Assuntos
Bovinos/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/normas , Análise de Sequência de RNA/normas , Animais , Bovinos/microbiologia , Bovinos/parasitologia , Bovinos/virologia , Biologia Computacional , FemininoRESUMO
BACKGROUND: MHC class I genotyping is essential for a wide range of biomedical, immunological and biodiversity applications. Whereas in human a comprehensive MHC class I allele catalogue is available, respective data in non-model species is scarce in spite of decades of research. RESULTS: Taking advantage of the new high-throughput RNA sequencing technology (RNAseq), we developed a novel RNAseq-assisted method (RAMHCIT) for MHC class I typing at nucleotide level. RAMHCIT is performed on white blood cells, which highly express MHC class I molecules enabling reliable discovery of new alleles and discrimination of closely related alleles due to the high coverage of alleles with reads. RAMHCIT is more comprehensive than previous methods, because no targeted PCR pre-amplification of MHC loci is necessary, which avoids preselection of alleles as usually encountered, when amplification with MHC class I primers is performed prior to sequencing. In addition to allele identification, RAMHCIT also enables quantification of MHC class I expression at allele level, which was remarkably consistent across individuals. CONCLUSIONS: Successful application of RAMHCIT is demonstrated on a data set from cattle with different phenotype regarding a lethal, vaccination-induced alloimmune disease (bovine neonatal pancytopenia), for which MHC class I alleles had been postulated as causal agents.
Assuntos
Doenças dos Bovinos/etiologia , Genes MHC Classe I , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Doenças do Sistema Imunitário/veterinária , Vacinação/efeitos adversos , Vacinas/efeitos adversos , Alelos , Animais , Bovinos , Linhagem Celular , Técnicas de Genotipagem , Alemanha , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Vacinas/administração & dosagem , Fluxo de TrabalhoRESUMO
BACKGROUND: The "rat-tail" syndrome (RTS) is an inherited hypotrichosis in cattle, which is exclusively expressed in diluted coloured hair. The affected animals also suffer from disturbed thermoregulation, which impairs their health and growth performance. Phenotypic features that are similar to RTS are observed in dogs with black hair follicle dysplasia. RESULTS: We used a resource cross population between German Holstein and Charolais cattle breeds to prove that epistatic interactions between at least three independent genetic loci are required for the expression of the RTS phenotype. In this population, the RTS is exclusively expressed in animals with a eumelanic background that is due to the dominant E (D) allele at the melanocortin 1 receptor gene located on Bos taurus autosome (BTA) 18. In addition, only the individuals that are heterozygous at the dilution locus on BTA5 that corresponds to the premelanosome protein or silver gene variant c.64G>A were classified as displaying a RTS phenotype. Linkage and whole-genome association analyses using different models and different pedigrees allowed us to map a third locus (hereafter referred to as the RTS locus) that is essential for the expression of the RTS phenotype to the chromosomal region between 14 and 22 Mb on BTA5. Our findings clearly demonstrate that the RTS and dilution loci are distinct loci on BTA5. CONCLUSIONS: Our study provides evidence that the RTS locus has effects on hair conformation and coat colour dilution and that the effect on coat colour dilution is clearly independent from that of the dilution locus. Finally, our results excluded several other loci that were previously reported to be associated with or to underlie hair conformation or pigmentation traits as the causal mutations of RTS and also several major functional candidate genes that are associated with hypotrichosis in humans. Our finding on the identification of a three-locus interaction that underlies RTS provides a prime example of epistatic interaction between several independent loci that is required for the expression of a distinct phenotype.
Assuntos
Doenças dos Bovinos/genética , Mapeamento Cromossômico , Epistasia Genética , Hipotricose/veterinária , Fenótipo , Locos de Características Quantitativas , Animais , Cruzamento , Bovinos , Ligação Genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Hipotricose/genética , Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Receptor Tipo 1 de Melanocortina/genética , Análise de Sequência de DNARESUMO
BACKGROUND: Deep RNA sequencing (RNAseq) has opened a new horizon for understanding global gene expression. The functional annotation of non-model mammalian genomes including bovines is still poor compared to that of human and mouse. This particularly applies to tissues without direct significance for milk and meat production, like skin, in spite of its multifunctional relevance for the individual. Thus, applying an RNAseq approach, we performed a whole transcriptome analysis of pigmented and nonpigmented bovine skin to describe the comprehensive transcript catalogue of this tissue. RESULTS: A total of 39,577 unique primary skin transcripts were mapped to the bovine reference genome assembly. The majority of the transcripts were mapped to known transcriptional units (65%). In addition to the reannotation of known genes, a substantial number (10,884) of unknown transcripts (UTs) were discovered, which had not previously been annotated. The classification of UTs was based on the prediction of their coding potential and comparative sequence analysis, subsequently followed by meticulous manual curation. The classification analysis and experimental validation of selected UTs confirmed that RNAseq data can be used to amend the annotation of known genes by providing evidence for additional exons, untranslated regions or splice variants, by approving genes predicted in silico and by identifying novel bovine loci. A large group of UTs (4,848) was predicted to potentially represent long noncoding RNA (lncRNA). Predominantly, potential lncRNAs mapped in intergenic chromosome regions (4,365) and therefore, were classified as potential intergenic lncRNA. Our analysis revealed that only about 6% of all UTs displayed interspecies conservation and discovered a variety of unknown transcripts without interspecies homology but specific expression in bovine skin. CONCLUSIONS: The results of our study demonstrate a complex transcript pattern for bovine skin and suggest a possible functional relevance of novel transcripts, including lncRNA, in the modulation of pigmentation processes. The results also indicate that the comprehensive identification and annotation of unknown transcripts from whole transcriptome analysis using RNAseq data remains a tremendous future challenge.
Assuntos
RNA Longo não Codificante/genética , Pigmentação da Pele/genética , Pele/metabolismo , Transcrição Gênica , Animais , Bovinos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mamíferos , Camundongos , RNA Longo não Codificante/biossínteseRESUMO
BACKGROUND: Systems biology enables the identification of gene networks that modulate complex traits. Comprehensive metabolomic analyses provide innovative phenotypes that are intermediate between the initiator of genetic variability, the genome, and raw phenotypes that are influenced by a large number of environmental effects. The present study combines two concepts, systems biology and metabolic analyses, in an approach without prior functional hypothesis in order to dissect genes and molecular pathways that modulate differential growth at the onset of puberty in male cattle. Furthermore, this integrative strategy was applied to specifically explore distinctive gene interactions of non-SMC condensin I complex, subunit G (NCAPG) and myostatin (GDF8), known modulators of pre- and postnatal growth that are only partially understood for their molecular pathways affecting differential body weight. RESULTS: Our study successfully established gene networks and interacting partners affecting growth at the onset of puberty in cattle. We demonstrated the biological relevance of the created networks by comparison to randomly created networks. Our data showed that GnRH (Gonadotropin-releasing hormone) signaling is associated with divergent growth at the onset of puberty and revealed two highly connected hubs, BTC and DGKH, within the network. Both genes are known to directly interact with the GnRH signaling pathway. Furthermore, a gene interaction network for NCAPG containing 14 densely connected genes revealed novel information concerning the functional role of NCAPG in divergent growth. CONCLUSIONS: Merging both concepts, systems biology and metabolomic analyses, successfully yielded new insights into gene networks and interacting partners affecting growth at the onset of puberty in cattle. Genetic modulation in GnRH signaling was identified as key modifier of differential cattle growth at the onset of puberty. In addition, the benefit of our innovative concept without prior functional hypothesis was demonstrated by data suggesting that NCAPG might contribute to vascular smooth muscle contraction by indirect effects on the NO pathway via modulation of arginine metabolism. Our study shows for the first time in cattle that integration of genetic, physiological and metabolomics data in a systems biology approach will enable (or contribute to) an improved understanding of metabolic and gene networks and genotype-phenotype relationships.
Assuntos
Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/genética , Hormônio Liberador de Gonadotropina/genética , Complexos Multiproteicos/genética , Miostatina/genética , Maturidade Sexual/genética , Biologia de Sistemas , Animais , Peso Corporal/genética , Bovinos , Epistasia Genética , Perfilação da Expressão Gênica , Variação Genética , Masculino , Redes e Vias Metabólicas/genética , Metabolômica , Miostatina/biossíntese , Fenótipo , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Bovine neonatal pancytopenia (BNP) is a new fatal, alloimmune/alloantibody mediated disease of new-born calves induced by ingestion of colostrum from cows, which had been vaccinated with a specific vaccine against the Bovine Virus Diarrhoea Virus (BVDV). The hypothesis of pathogenic MHC class I molecules in the vaccine had been put up, but no formal proof of specific causal MHC class I alleles has been provided yet. However, the unique features of the vaccine obviously result in extremely high specific antibody titres in the vaccinated animals, but apparently also in further molecules inducing BNP. Thus, a comprehensive picture of the immune response to the vaccine is essential. Applying the novel approach of next generation RNA sequencing (RNAseq), our study provides a new holistic, comprehensive analysis of the blood transcriptome regulation after vaccination with the specific BVDV vaccine. Our RNAseq approach identified a novel cytokine-like gene in the bovine genome that is highly upregulated after vaccination. This gene has never been described before in any other species and might be specific to ruminant immune response. Furthermore, our data revealed a very coordinated immune response to double-stranded (ds) RNA or a dsRNA analogue after vaccination with the inactivated single-stranded (ss) RNA vaccine. This would suggest either a substantial contamination of the vaccine with dsRNA from host cells after virus culture or a dsRNA analogue applied to the vaccine. The first option would highlight the potential risks associated with virus culture on homologous cells during vaccine production; the latter option would emphasise the potential risks associated with immune stimulating adjuvants used in vaccine production.
Assuntos
Anticorpos Antivirais/sangue , Doenças dos Bovinos/imunologia , Citocinas/genética , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Imunidade Ativa , Pancitopenia/veterinária , Regulação para Cima , Vacinas Virais/imunologia , Sequência de Aminoácidos , Animais , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/virologia , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica/veterinária , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Isoanticorpos/sangue , Dados de Sequência Molecular , Pancitopenia/sangue , Pancitopenia/imunologia , Pancitopenia/virologia , Alinhamento de Sequência/veterinária , Análise de Sequência de RNA/veterinária , Vacinas de Produtos Inativados/imunologiaRESUMO
The insertion of an endogenous retroviral long terminal repeat (LTR) sequence into the bovine apolipoprotein B (APOB) gene is causal to the inherited genetic defect cholesterol deficiency (CD) observed in neonatal and young calves. Affected calves suffer from developmental abnormalities, symptoms of incurable diarrhoea and often die within weeks to a few months after birth. Neither the detailed effects of the LTR insertion on APOB expression profile nor the specific mode of inheritance nor detailed phenotypic consequences of the mutation are undisputed. In our study, we analysed German Holstein dairy heifers at the peak of hepatic metabolic load and exposed to an additional pathogen challenge for clinical, metabolic and hepatic transcriptome differences between wild type (CDF) and heterozygote carriers of the mutation (CDC). Our data revealed that a divergent allele-biased expression pattern of the APOB gene in heterozygous CDC animals leads to a tenfold higher expression of exons upstream and a decreased expression of exons downstream of the LTR insertion compared to expression levels of CDF animals. This expression pattern could be a result of enhancer activity induced by the LTR insertion, in addition to a previously reported artificial polyadenylation signal. Thus, our data support a regulatory potential of mobile element insertions. With regard to the phenotype generated by the LTR insertion, heterozygote CDC carriers display significantly differential hepatic expression of genes involved in cholesterol biosynthesis and lipid metabolism. Phenotypically, CDC carriers show a significantly affected lipomobilization compared to wild type animals. These results reject a completely recessive mode of inheritance for the CD defect, which should be considered for selection decisions in the affected population. Exemplarily, our results illustrate the regulatory impact of mobile element insertions not only on specific host target gene expression but also on global transcriptome profiles with subsequent biological, functional and phenotypic consequences in a natural in-vivo model of a non-model mammalian organism.
Assuntos
Retroelementos , Sequências Repetidas Terminais , Alelos , Animais , Apolipoproteínas B/genética , Bovinos , Colesterol , Feminino , Mamíferos/genética , Retroelementos/genética , Sequências Repetidas Terminais/genéticaRESUMO
BACKGROUND: The intramuscular fat deposition and the fatty acid profiles of beef affect meat quality. High proportions of unsaturated fatty acids are related to beef flavor and are beneficial for the nutritional value of meat. Moreover, a variety of clinical and epidemiologic studies showed that particularly long-chain omega-3 fatty acids from animal sources have a positive impact on human health and disease. RESULTS: To screen for genetic factors affecting fatty acid profiles in beef, we initially performed a microsatellite-based genome scan in a F(2) Charolais × German Holstein resource population and identified a quantitative trait locus (QTL) for fatty acid composition in a region on bovine chromosome 27 where previously QTL affecting marbling score had been detected in beef cattle populations. The long-chain acyl-CoA synthetase 1 (ACSL1) gene was identified as the most plausible functional and positional candidate gene in the QTL interval due to its direct impact on fatty acid metabolism and its position in the QTL interval. ACSL1 is necessary for synthesis of long-chain acyl-CoA esters, fatty acid degradation and phospholipid remodeling. We validated the genomic annotation of the bovine ACSL1 gene by in silico comparative sequence analysis and experimental verification. Re-sequencing of the complete coding, exon-flanking intronic sequences, 3' untranslated region (3'UTR) and partial promoter region of the ACSL1 gene revealed three synonymous mutations in exons 6, 7, and 20, six noncoding intronic gene variants, six polymorphisms in the promoter region, and four variants in the 3' UTR region. The association analysis identified the gene variant in intron 5 of the ACSL1 gene (c.481-233A>G) to be significantly associated with the relative content of distinct fractions and ratios of fatty acids (e.g., n-3 fatty acids, polyunsaturated, n-3 long-chain polyunsaturated fatty acids, trans vaccenic acid) in skeletal muscle. A tentative association of the ACSL1 gene variant with intramuscular fat content indicated that an indirect effect on fatty acid composition via modulation of total fat content of skeletal muscle cannot be excluded. CONCLUSIONS: The initial QTL analysis suggested the ACSL1 gene as a positional and functional candidate gene for fatty acid composition in bovine skeletal muscle. The findings of subsequent association analyses indicate that ACSL1 or a separate gene in close proximity might play a functional role in mediating the lipid composition of beef.
Assuntos
Bovinos/genética , Coenzima A Ligases/genética , Ácidos Graxos Insaturados/análise , Carne/análise , Músculo Esquelético/química , Animais , Bovinos/metabolismo , Cruzamentos Genéticos , Ácidos Graxos Insaturados/biossíntese , Músculo Esquelético/metabolismo , Polimorfismo Genético , Locos de Características QuantitativasRESUMO
Two bovine transcripts encoded by the interleukin-1 receptor-associated kinase 1 (IRAK1) gene and the locus LOC618944 predicted as similar to human chromosome 6 open reading frame 52 (C6orf52) gene had indicated divergent expression in bovine skeletal muscle containing different amount of intramuscular fat in a pilot screening experiment. However, for both loci any role in the regulation of energy or fat metabolism is not yet described. In this study, we validated and refined gene structure, screened for mRNA splice variants and analyzed the tissue-specific gene expression patterns of both loci as a prerequisite to elucidate their potential physiological function. Based on comparative sequence analysis, a new full-length gene model for the bovine IRAK1 gene was developed and confirmed experimentally. Expression of IRAK1 mRNA was found in a variety of tissues, and a splice variant was identified in skeletal muscle caused by an in-frame deleted segment of 210 bp affecting regions of intrinsic disorder in the respective protein. For the locus LOC618944, our data contributed to a revised gene model and its assignment to BTA23 (bovine chromosome 23) on the current bovine genome assembly supported by comparative similarity analysis between the bovine and human genomes and experimental data. Furthermore, we identified several splice variants in mammary gland, fat and skeletal muscle tissue and detected a highly similar processed pseudogene on BTA26. All transcript variants of LOC618944 detected in the analyzed tissues represent noncoding RNAs. For both loci, our results suggest yet undetected physiological functions in tissues relevant for fat or energy metabolism in cattle.
Assuntos
Metabolismo dos Lipídeos/genética , Processamento Alternativo , Animais , Bovinos , Mapeamento Cromossômico , Metabolismo Energético , Perfilação da Expressão Gênica , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Modelos Genéticos , Dados de Sequência Molecular , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Bovine mammary function at molecular level is often studied using mammary tissue or primary bovine mammary epithelial cells (pbMECs). However, bulk tissue and primary cells are heterogeneous with respect to cell populations, adding further transcriptional variation in addition to genetic background. Thus, understanding of the variation in gene expression profiles of cell populations and their effect on function are limited. To investigate the mononuclear cell composition in bovine milk, we analyzed a single-cell suspension from a milk sample. Additionally, we harvested cultured pbMECs to characterize gene expression in a homogeneous cell population. Using the Drop-seq technology, we generated single-cell RNA datasets of somatic milk cells and pbMECs. The final datasets after quality control filtering contained 7,119 and 10,549 cells, respectively. The pbMECs formed 14 indefinite clusters displaying intrapopulation heterogeneity, whereas the milk cells formed 14 more distinct clusters. Our datasets constitute a molecular cell atlas that provides a basis for future studies of milk cell composition and gene expression, and could serve as reference datasets for milk cell analysis.
Assuntos
Leucócitos Mononucleares/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Leite/citologia , Leite/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Animais , Bovinos , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Cultura Primária de CélulasRESUMO
Several recent studies have demonstrated the role of long non-coding RNAs (lncRNAs) in regulating the defense mechanism against parasite infections, but no studies are available that investigated their relevance for immune response to nematode infection in sheep. Thus, the aim of the current study was to (i) detect putative lncRNAs that are expressed in the abomasal lymph node of adult sheep after an experimental infection with the gastrointestinal nematode (GIN) Teladorsagia circumcincta and (ii) to elucidate their potential functional role associated with the differential host immune response. We hypothesized that putative lncRNAs differentially expressed (DE) between samples from animals that differ in resistance to infection may play a significant regulatory role in response to nematode infection in adult sheep. To obtain further support for our hypothesis, we performed co-expression and functional gene enrichment analyses with the differentially expressed lncRNAs (DE lncRNAs). In a conservative approach, we included for this predictive analysis only those lncRNAs that are confirmed and supported by documentation of expression in gastrointestinal tissues in the current sheep gene atlas. We identified 9,105 putative lncRNA transcripts corresponding to 7,124 gene loci. Of these, 457 were differentially expressed lncRNA loci (DELs) with 683 lncRNA transcripts. Based on a gene co-expression analysis via weighted gene co-expression network analysis, 12 gene network modules (GNMs) were found significantly correlated with at least one of 10 selected target DE lncRNAs. Based on the principle of "guilt-by-association," the DE genes from each of the three most significantly correlated GNMs were subjected to a gene enrichment analysis. The significant pathways associated with DE lncRNAs included ERK5 Signaling, SAPK/JNK Signaling, RhoGDI Signaling, EIF2 Signaling, Regulation of eIF4 and p70S6K Signaling and Oxidative Phosphorylation pathways. They belong to signaling pathway categories like Cellular Growth, Proliferation and Development, Cellular Stress and Injury, Intracellular and Second Messenger Signaling and Apoptosis. Overall, this lncRNA study conducted in adult sheep after GIN infection provided first insights into the potential functional role of lncRNAs in the differential host response to nematode infection.
RESUMO
Identifying trait-associated genetic variation offers new prospects to reveal novel physiological pathways modulating complex traits. Taking advantage of a unique animal model, we identified the I442M mutation in the non-SMC condensin I complex, subunit G (NCAPG) gene and the Q204X mutation in the growth differentiation factor 8 (GDF8) gene as substantial modulators of pre- and/or postnatal growth in cattle. In a combined metabolomic and genotype association approach, which is the first respective study in livestock, we surveyed the specific physiological background of the effects of both loci on body-mass gain and lipid deposition. Our data provided confirming evidence from two historically and geographically distant cattle populations that the onset of puberty is the key interval of divergent growth. The locus-specific metabolic patterns obtained from monitoring 201 plasma metabolites at puberty mirror the particular NCAPG I442M and GDF8 Q204X effects and represent biosignatures of divergent physiological pathways potentially modulating effects on proportional and disproportional growth, respectively. While the NCAPG I442M mutation affected the arginine metabolism, the 204X allele in the GDF8 gene predominantly raised the carnitine level and had concordant effects on glycerophosphatidylcholines and sphingomyelins. Our study provides a conclusive link between the well-described growth-regulating functions of arginine metabolism and the previously unknown specific physiological role of the NCAPG protein in mammalian metabolism. Owing to the confirmed effect of the NCAPG/LCORL locus on human height in genome-wide association studies, the results obtained for bovine NCAPG might add valuable, comparative information on the physiological background of genetically determined divergent mammalian growth.