Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Br J Cancer ; 117(1): 41-50, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28535153

RESUMO

BACKGROUND: Some highly penetrant familial cancer syndromes exhibit elevated leukaemia risk, and there is evidence for familial clustering of lung cancer and other common cancers. Lung cancer and leukaemia are strongly radiogenic, but there are few indications that high-energy beam irradiation is markedly more effective than lower-energy radiation. METHODS: We used a Cox model with familially structured random effects to assess 16 mortality end points in a group of 1850 mice in 47 families maintained in a circular-breeding scheme, exposed to accelerated Si or Fe ions (0.4 Gy) or 137Cs gamma rays (3 Gy). RESULTS: There is periodicity in the effect of familial relatedness, which is most pronounced for pulmonary adenoma, Harderian-gland adenoma, Harderian-gland tumour, ectodermal tumour, pulmonary adenocarcinoma and hepatocellular carcinoma (P=0.0001/0.0003/0.0017/0.0035/0.0257/0.0340, respectively) with families that are 3-4 generations apart most strongly correlated; myeloid leukaemia also exhibited a striking periodic correlation structure. The relative risks of high-energy Si or Fe ions are not significantly different and are less than for 137Cs gamma-rays for most end points at the doses used. CONCLUSIONS: There is periodicity in the effect of familial relatedness for various cancer sites. The effects per unit dose of high-energy charged particle beams are no higher than ninefold those of lower-energy gamma radiation.


Assuntos
Raios gama/efeitos adversos , Neoplasias Induzidas por Radiação/genética , Neoplasias/genética , Adenocarcinoma/etiologia , Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Adenoma/etiologia , Adenoma/genética , Adenoma/mortalidade , Animais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Glândula de Harder , Leucemia Mieloide/etiologia , Leucemia Mieloide/genética , Leucemia Mieloide/mortalidade , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/mortalidade , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Camundongos , Neoplasias/etiologia , Neoplasias/mortalidade , Neoplasias Induzidas por Radiação/mortalidade , Síndromes Neoplásicas Hereditárias/etiologia , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/mortalidade , Modelos de Riscos Proporcionais , Radiação Ionizante , Neoplasias das Glândulas Sebáceas/etiologia , Neoplasias das Glândulas Sebáceas/genética , Neoplasias das Glândulas Sebáceas/mortalidade
3.
Life Sci Space Res (Amst) ; 40: 97-105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245354

RESUMO

Health effects of space radiation are a serious concern for astronauts on long-duration missions. The lens of the eye is one of the most radiosensitive tissues in the body and, therefore, ocular health risks for astronauts is a significant concern. Studies in humans and animals indicate that ionizing radiation exposure to the eye produces characteristic lens changes, termed "radiation cataract," that can affect visual function. Animal models of radiation cataractogenesis have previously utilized inbred mouse or rat strains. These studies were essential for determining morphological changes and dose-response relationships between radiation exposure and cataract. However, the relevance of these studies to human radiosensitivity is limited by the narrow phenotypic range of genetically homogeneous animal models. To model radiation cataract in genetically diverse populations, longitudinal cataract phenotyping was nested within a lifetime carcinogenesis study in male and female heterogeneous stock (HS/Npt) mice exposed to 0.4 Gy HZE ions (n = 609) or 3.0 Gy γ-rays (n = 602) and in unirradiated controls (n = 603). Cataractous change was quantified in each eye for up to 2 years using Merriam-Focht grading criteria by dilated slit lamp examination. Virtual Optomotry™ measurement of visual acuity and contrast sensitivity was utilized to assess visual function in a subgroup of mice. Prevalence and severity of posterior lens opacifications were 2.6-fold higher in HZE ion and 2.3-fold higher in γ-ray irradiated mice compared to unirradiated controls. Male mice were at greater risk for spontaneous and radiation associated cataracts. Risk for cataractogenesis was associated with family structure, demonstrating that HS/Npt mice are well-suited to evaluate genetic determinants of ocular radiosensitivity. Last, mice were extensively evaluated for cataract and tumor formation, which revealed an overlap between individual susceptibility to both cancer and cataract.


Assuntos
Catarata , Cristalino , Lesões por Radiação , Camundongos , Ratos , Masculino , Feminino , Humanos , Animais , Catarata/etiologia , Catarata/epidemiologia , Catarata/patologia , Lesões por Radiação/epidemiologia , Cristalino/patologia , Cristalino/efeitos da radiação , Raios gama/efeitos adversos , Íons , Relação Dose-Resposta à Radiação
4.
Int J Radiat Biol ; 100(6): 890-902, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38631047

RESUMO

Purpose: Continuous exposure to ionizing radiation at a low dose rate poses significant health risks to humans on deep space missions, prompting the need for mechanistic studies to identify countermeasures against its deleterious effects. Mitochondria are a major subcellular locus of radiogenic injury, and may trigger secondary cellular responses through the production of reactive oxygen species (mtROS) with broader biological implications. Methods and Materials: To determine the contribution of mtROS to radiation-induced cellular responses, we investigated the impacts of protracted γ-ray exposures (IR; 1.1 Gy delivered at 0.16 mGy/min continuously over 5 days) on mitochondrial function, gene expression, and the protein secretome of human HCA2-hTERT fibroblasts in the presence and absence of a mitochondria-specific antioxidant mitoTEMPO (MT; 5 µM). Results: IR increased fibroblast mitochondrial oxygen consumption (JO2) and H2O2 release rates (JH2O2) under energized conditions, which corresponded to higher protein expression of NADPH Oxidase (NOX) 1, NOX4, and nuclear DNA-encoded subunits of respiratory chain Complexes I and III, but depleted mtDNA transcripts encoding subunits of the same complexes. This was associated with activation of gene programs related to DNA repair, oxidative stress, and protein ubiquination, all of which were attenuated by MT treatment along with radiation-induced increases in JO2 and JH2O2. IR also increased secreted levels of interleukin-8 and Type I collagens, while decreasing Type VI collagens and enzymes that coordinate assembly and remodeling of the extracellular matrix. MT treatment attenuated many of these effects while augmenting others, revealing complex effects of mtROS in fibroblast responses to IR. Conclusion: These results implicate mtROS production in fibroblast responses to protracted radiation exposure, and suggest potentially protective effects of mitochondrial-targeted antioxidants against radiogenic tissue injury in vivo.


Assuntos
Fibroblastos , Raios gama , Mitocôndrias , Espécies Reativas de Oxigênio , Humanos , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/efeitos da radiação , Mitocôndrias/metabolismo , Raios gama/efeitos adversos , Linhagem Celular , Exposição à Radiação/efeitos adversos , Compostos Organofosforados , Piperidinas
5.
Mutagenesis ; 28(1): 71-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22987027

RESUMO

Exposure to sparsely ionising gamma- or X-ray irradiation is known to increase the risk of leukaemia in humans. However, heavy ion radiotherapy and extended space exploration will expose humans to densely ionising high linear energy transfer (LET) radiation for which there is currently no understanding of leukaemia risk. Murine models have implicated chromosomal deletion that includes the hematopoietic transcription factor gene, PU.1 (Sfpi1), and point mutation of the second PU.1 allele as the primary cause of low-LET radiation-induced murine acute myeloid leukaemia (rAML). Using array comparative genomic hybridisation, fluorescence in situ hybridisation and high resolution melt analysis, we have confirmed that biallelic PU.1 mutations are common in low-LET rAML, occurring in 88% of samples. Biallelic PU.1 mutations were also detected in the majority of high-LET rAML samples. Microsatellite instability was identified in 42% of all rAML samples, and 89% of samples carried increased microsatellite mutant frequencies at the single-cell level, indicative of ongoing instability. Instability was also observed cytogenetically as a 2-fold increase in chromatid-type aberrations. These data highlight the similarities in molecular characteristics of high-LET and low-LET rAML and confirm the presence of ongoing chromosomal and microsatellite instability in murine rAML.


Assuntos
Raios gama/efeitos adversos , Leucemia Mieloide Aguda/etiologia , Leucemia Induzida por Radiação , Instabilidade de Microssatélites , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Animais , Radioisótopos de Césio , Cromátides/efeitos da radiação , Aberrações Cromossômicas , Relação Dose-Resposta à Radiação , Hibridização in Situ Fluorescente , Ferro , Leucemia Mieloide Aguda/genética , Leucemia Induzida por Radiação/genética , Transferência Linear de Energia , Masculino , Camundongos , Camundongos Endogâmicos CBA , Mutação , Análise de Célula Única
6.
Life Sci Space Res (Amst) ; 36: 90-104, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682835

RESUMO

For missions beyond low Earth orbit to the moon or Mars, space explorers will encounter a complex radiation field composed of various ion species with a broad range of energies. Such missions pose significant radiation protection challenges that need to be solved in order to minimize exposures and associated health risks. An innovative galactic cosmic ray simulator (GCRsim) was recently developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The GCRsim technology is intended to represent major components of the space radiation environment in a ground analog laboratory setting where it can be used to improve understanding of biological risks and serve as a testbed for countermeasure development and validation. The current GCRsim consists of 33 energetic ion beams that collectively simulate the primary and secondary GCR field encountered by humans in space over the broad range of particle types, energies, and linear energy transfer (LET) of interest to health effects. A virtual workshop was held in December 2020 to assess the status of the NASA baseline GCRsim. Workshop attendees examined various aspects of simulator design, with a particular emphasis on beam selection strategies. Experimental results, modeling approaches, areas of consensus, and questions of concern were also discussed in detail. This report includes a summary of the GCRsim workshop and a description of the current status of the GCRsim. This information is important for future advancements and applications in space radiobiology.


Assuntos
Radiação Cósmica , Proteção Radiológica , Voo Espacial , Estados Unidos , Humanos , United States National Aeronautics and Space Administration , Radiobiologia , Carmustina
7.
Life Sci Space Res (Amst) ; 35: 140-149, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36336359

RESUMO

NASA aims to return humans to the moon within the next five years and to land humans on Mars in a few decades. Space radiation exposure represents a major challenge to astronauts' health during long-duration missions, as it is linked to increased risks of cancer, cardiovascular dysfunctions, central nervous system (CNS) impairment, and other negative outcomes. Characterization of radiation health effects and developing corresponding countermeasures are high priorities for the preparation of long duration space travel. Due to limitations of animal and cell models, the development of novel physiologically relevant radiation models is needed to better predict these individual risks and bridge gaps between preclinical testing and clinical trials in drug development. "Clinical Trial in a Dish" (CTiD) is now possible with the use of human induced pluripotent stem cells (hiPSCs), offering a powerful tool for drug safety or efficacy testing using patient-specific cell models. Here we review the development and applications of CTiD for space radiation biology and countermeasure studies, focusing on progress made in the past decade.


Assuntos
Radiação Cósmica , Células-Tronco Pluripotentes Induzidas , Lesões por Radiação , Voo Espacial , Animais , Humanos , Astronautas , Radiação Cósmica/efeitos adversos , Lua , Lesões por Radiação/prevenção & controle , Ensaios Clínicos como Assunto
8.
Life Sci Space Res (Amst) ; 35: 127-139, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36336358

RESUMO

Radiation-induced immune suppression poses significant health challenges for millions of patients undergoing cancer chemotherapy and radiotherapy treatment, and astronauts and space tourists travelling to outer space. While a limited number of recombinant protein therapies, such a Sargramostim, are approved for accelerating hematologic recovery, the pronounced role of granulocyte-macrophage colony-stimulating factor (GM-CSF or CSF2) as a proinflammatory cytokine poses additional challenges in creating immune dysfunction towards pathogenic autoimmune diseases. Here we present an approach to high-throughput drug-discovery, target validation, and lead molecule identification using nucleic acid-based molecules. These Nanoligomer™ molecules are rationally designed using a bioinformatics and an artificial intelligence (AI)-based ranking method and synthesized as a single-modality combining 6-different design elements to up- or downregulate gene expression of target gene, resulting in elevated or diminished protein expression of intended target. This method additionally alters related gene network targets ultimately resulting in pathway modulation. This approach was used to perturb and identify the most effective upstream regulators and canonical pathways for therapeutic intervention to reverse radiation-induced immunosuppression. The lead Nanoligomer™ identified in a screen of human donor derived peripheral blood mononuclear cells (PBMCs) upregulated Erythropoietin (EPO) and showed the greatest reversal of radiation induced cytokine changes. It was further tested in vivo in a mouse radiation-model with low-dose (3 mg/kg) intraperitoneal administration and was shown to regulate gene expression of epo in lung tissue as well as counter immune suppression. These results point to the broader applicability of our approach towards drug-discovery, and potential for further investigation of our lead molecule as reversible gene therapy to treat adverse health outcomes induced by radiation exposure.


Assuntos
Inteligência Artificial , Leucócitos Mononucleares , Camundongos , Animais , Humanos , Leucócitos Mononucleares/metabolismo , Proteínas Recombinantes/farmacologia , Citocinas , Terapia de Imunossupressão , Fator Estimulador de Colônias de Granulócitos/farmacologia
9.
Sci Rep ; 12(1): 10927, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764780

RESUMO

Research examining the potential for circulating miRNA to serve as markers for preneoplastic lesions or early-stage hepatocellular carcinoma (HCC) is hindered by the difficulties of obtaining samples from asymptomatic individuals. As a surrogate for human samples, we identified hub miRNAs in gene co-expression networks using HCC-bearing C3H mice. We confirmed 38 hub miRNAs as associated with HCC in F2 hybrid mice derived from radiogenic HCC susceptible and resistant founders. When compared to a panel of 12 circulating miRNAs associated with human HCC, two had no mouse ortholog and 7 of the remaining 10 miRNAs overlapped with the 38 mouse HCC hub miRNAs. Using small RNA sequencing data generated from serially collected plasma samples in F2 mice, we examined the temporal levels of these 7 circulating miRNAs and found that the levels of 4 human circulating markers, miR-122-5p, miR-100-5p, miR-34a-5p and miR-365-3p increased linearly as the time approaching HCC detection neared, suggesting a correlation of miRNA levels with oncogenic progression. Estimation of change points in the kinetics of the 4 circulating miRNAs suggested the changes started 17.5 to 6.8 months prior to HCC detection. These data establish these 4 circulating miRNAs as potential sentinels for preneoplastic lesions or early-stage HCC.


Assuntos
Carcinoma Hepatocelular , MicroRNA Circulante , Neoplasias Hepáticas , MicroRNAs , Animais , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , MicroRNA Circulante/genética , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C3H , MicroRNAs/genética , Compostos Radiofarmacêuticos
10.
Int J Radiat Biol ; 97(8): 1063-1076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31687872

RESUMO

PURPOSE: During extended missions into deep space, astronauts will be exposed to a complex radiation field that includes high linear energy transfer (LET) radiation from high energy, heavy ions (HZE particles) at low dose rates of about 0.5 mGy/d for long durations. About 20% of the dose is delivered by ions with LET greater than 10 keV/µm. There are sparse empirical data in any species for carcinogenic effects from whole-body exposures to external sources of mixed or high LET radiation at this level of dose rates. For the induction of solid tumors, acute exposures to HZE ions have been shown to be substantially more effective per unit dose than low LET exposures associated with photons. To determine the health effects of high LET radiation at space-relevant dose rates on experimental animals, we developed a vivarium in which rodents could be irradiated with Californium (252Cf) neutrons for protracted periods of time. MATERIALS AND METHODS: The neutron source is a panoramic irradiator containing 252Cf located in a concrete shielded vault with a footprint of 53 m2. The vault can accommodate sufficient caging to simultaneously irradiate 900 mice and 60 rats for durations up to 400 d at a dose rate of 1 mGy/d and is approved for extended animal husbandry. RESULTS: The mixed field fluence is a combination of neutrons and photons emitted directly from the source and scattered particles from the concrete walls and floor. Mixed field dosimetry was performed using a miniature GM counter and CaF2:Dy thermoluminescent dosimeters (TLD) for photons and tissue-equivalent proportional counters (TEPC) for neutrons. TEPC data provided macroscopic dose rates as well as measurements of radiation quality based on lineal energy, y, and LET. The instantaneous dose rate from the source decreases with a half-life of 2.6 years. The exposure time is adjusted weekly to yield a total dose 1 mGy/d. The photon contribution is 20% of the total dose. The uncertainty in the delivered dose is estimated to be ±20% taking into account spatial variations in the room and random position of mice in each cage. The dose averaged LET for the charged particle recoil nuclei is 68 keV/µ. CONCLUSIONS: We have developed a facility to perform high LET studies in mice and rats at space relevant dose rates and career-relevant doses using neutrons emitted from the spontaneous fission of 252Cf.


Assuntos
Transferência Linear de Energia/efeitos da radiação , Nêutrons/efeitos adversos , Animais , Camundongos , Radiometria , Ratos , Dosimetria Termoluminescente , Fatores de Tempo
11.
Radiat Res ; 196(1): 31-39, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857301

RESUMO

During space missions, astronauts experience acute and chronic low-dose-rate radiation exposures. Given the clear gap of knowledge regarding such exposures, we assessed the effects acute and chronic exposure to a mixed field of neutrons and photons and single or fractionated simulated galactic cosmic ray exposure (GCRsim) on behavioral and cognitive performance in mice. In addition, we assessed the effects of an aspirin-containing diet in the presence and absence of chronic exposure to a mixed field of neutrons and photons. In C3H male mice, there were effects of acute radiation exposure on activity levels in the open field containing objects. In addition, there were radiation-aspirin interactions for effects of chronic radiation exposure on activity levels and measures of anxiety in the open field, and on activity levels in the open field containing objects. There were also detrimental effects of aspirin and chronic radiation exposure on the ability of mice to distinguish the familiar and novel object. Finally, there were effects of acute GCRsim on activity levels in the open field containing objects. Activity levels were lower in GCRsim than sham-irradiated mice. Thus, acute and chronic irradiation to a mixture of neutrons and photons and acute and fractionated GCRsim have differential effects on behavioral and cognitive performance of C3H mice. Within the limitations of our study design, aspirin does not appear to be a suitable countermeasure for effects of chronic exposure to space radiation on cognitive performance.


Assuntos
Comportamento Animal/efeitos da radiação , Cognição/efeitos da radiação , Radiação Cósmica , Nêutrons , Fótons , Animais , Aspirina/administração & dosagem , Condicionamento Clássico , Medo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H
12.
Sci Rep ; 11(1): 14052, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234215

RESUMO

High-charge, high-energy ion particle (HZE) radiations are extraterrestrial in origin and characterized by high linear energy transfer (high-LET), which causes more severe cell damage than low-LET radiations like γ-rays or photons. High-LET radiation poses potential cancer risks for astronauts on deep space missions, but the studies of its carcinogenic effects have relied heavily on animal models. It remains uncertain whether such data are applicable to human disease. Here, we used genomics approaches to directly compare high-LET radiation-induced, low-LET radiation-induced and spontaneous hepatocellular carcinoma (HCC) in mice with a human HCC cohort from The Cancer Genome Atlas (TCGA). We identified common molecular pathways between mouse and human HCC and discovered a subset of orthologous genes (mR-HCC) that associated high-LET radiation-induced mouse HCC with a subgroup (mrHCC2) of the TCGA cohort. The mrHCC2 TCGA cohort was more enriched with tumor-suppressing immune cells and showed a better prognostic outcome than other patient subgroups.


Assuntos
Carcinoma Hepatocelular/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Neoplasias Hepáticas/genética , Radiação Ionizante , Transcriptoma , Animais , Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Biologia Computacional/métodos , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Camundongos , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
13.
Sci Rep ; 11(1): 14899, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290258

RESUMO

The space radiation environment consists of multiple species of charged particles, including 28Si ions, that may impact brain function during and following missions. To develop biomarkers of the space radiation response, BALB/c and C3H female and male mice and their F2 hybrid progeny were irradiated with 28Si ions (350 MeV/n, 0.2 Gy) and tested for behavioral and cognitive performance 1, 6, and 12 months following irradiation. The plasma of the mice was collected for analysis of miRNA levels. Select pertinent brain regions were dissected for lipidomic analyses and analyses of levels of select biomarkers shown to be sensitive to effects of space radiation in previous studies. There were associations between lipids in select brain regions, plasma miRNA, and cognitive measures and behavioral following 28Si ion irradiation. Different but overlapping sets of miRNAs in plasma were found to be associated with cognitive measures and behavioral in sham and irradiated mice at the three time points. The radiation condition revealed pathways involved in neurodegenerative conditions and cancers. Levels of the dendritic marker MAP2 in the cortex were higher in irradiated than sham-irradiated mice at middle age, which might be part of a compensatory response. Relationships were also revealed with CD68 in miRNAs in an anatomical distinct fashion, suggesting that distinct miRNAs modulate neuroinflammation in different brain regions. The associations between lipids in selected brain regions, plasma miRNA, and behavioral and cognitive measures following 28Si ion irradiation could be used for the development of biomarker of the space radiation response.


Assuntos
Comportamento Animal/efeitos da radiação , Encéfalo/metabolismo , Cognição/efeitos da radiação , Metabolismo dos Lipídeos/efeitos da radiação , MicroRNAs/sangue , Silício/efeitos adversos , Irradiação Corporal Total/efeitos adversos , Animais , Radiação Cósmica/efeitos adversos , Relação Dose-Resposta à Radiação , Feminino , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Radiação Ionizante
14.
Int J Radiat Biol ; 97(6): 804-814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33211576

RESUMO

The overall aim of this contribution to the 'Second Bill Morgan Memorial Special Issue' is to provide a high-level review of a recent report developed by a Committee for the National Council on Radiation Protection and Measurements (NCRP) titled 'Approaches for Integrating Information from Radiation Biology and Epidemiology to Enhance Low-Dose Health Risk Assessment'. It derives from previous NCRP Reports and Commentaries that provide the case for integrating data from radiation biology studies (available and proposed) with epidemiological studies (also available and proposed) to develop Biologically-Based Dose-Response (BBDR) models. In this review, it is proposed for such models to leverage the adverse outcome pathways (AOP) and key events (KE) approach for better characterizing radiation-induced cancers and circulatory disease (as the example for a noncancer outcome). The review discusses the current state of knowledge of mechanisms of carcinogenesis, with an emphasis on radiation-induced cancers, and a similar discussion for circulatory disease. The types of the various informative BBDR models are presented along with a proposed generalized BBDR model for cancer and a more speculative one for circulatory disease. The way forward is presented in a comprehensive discussion of the research needs to address the goal of enhancing health risk assessment of exposures to low doses of radiation. The use of an AOP/KE approach for developing a mechanistic framework for BBDR models of radiation-induced cancer and circulatory disease is considered to be a viable one based upon current knowledge of the mechanisms of formation of these adverse health outcomes and the available technical capabilities and computational advances. The way forward for enhancing low-dose radiation risk estimates will require there to be a tight integration of epidemiology data and radiation biology information to meet the goals of relevance and sensitivity of the adverse health outcomes required for overall health risk assessment at low doses and dose rates.


Assuntos
Rotas de Resultados Adversos , Medição de Risco , Humanos , Doses de Radiação , Proteção Radiológica , Radiobiologia
15.
Int J Radiat Biol ; 97(8): 1140-1151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33720813

RESUMO

PURPOSE: Estimating cancer risk associated with interplanetary space travel is complicated. Human exposure data to high atomic number, high-energy (HZE) radiation is lacking, so data from low linear energy transfer (low-LET) γ-ray radiation is used in risk models, with the assumption that HZE and γ-ray radiation have comparable biological effects. This assumption has been challenged by reports indicating that HZE radiation might produce more aggressive tumors. The goal of this research is to test whether high-LET HZE radiation induced tumors are more aggressive. MATERIALS AND METHODS: Murine models of mammary and liver cancer were used to compare the impact of exposure to 0.2Gy of 300MeV/n silicon ions, 3 Gy of γ-rays or no radiation. Numerous measures of tumor aggressiveness were assessed. RESULTS: For the mammary cancer models, there was no significant change in the tumor latency or metastasis in silicon-irradiated mice compared to controls. For the liver cancer models, we observed an increase in tumor incidence but not tumor aggressiveness in irradiated mice. CONCLUSION: Tumors in the HZE-irradiated mice were not more aggressive than those arising from exposure to low-LET γ-rays or spontaneously. Thus, enhanced aggressiveness does not appear to be a uniform characteristic of all tumors in HZE-irradiated animals.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Neoplasias Mamárias Experimentais/patologia , Animais , Relação Dose-Resposta à Radiação , Feminino , Humanos , Transferência Linear de Energia , Camundongos
16.
Behav Brain Res ; 379: 112377, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31765722

RESUMO

To simulate the space radiation environment astronauts are exposed to, most studies involve acute exposures but during a space mission there will be chronic (long-lasting) exposures. To address this knowledge gap, a neutron irradiator using a 252Cf (252Californium) source was used to generate a mixed field of neutrons and photons to simulate chronic, low dose rate exposures to high LET radiation. In the present study, we assessed the effects chronic neutron exposure starting at 60 days of age on behavioral and cognitive performance of BALB/c female and C3H male mice at 600 and 700 days of age as part of an opportunistic study that took advantage of the availability of neutron and sham-irradiated mice from a radiation carcinogenesis experiment. There were profound dose- and time point-dependent effects of chronic neutron exposure. At the 600-day time point, irradiated BALB/c female mice showed improved nest building at all three doses. At the 700-day, but not 600-day, time point slightly but significantly increased body weights were seen in C3H male mice exposed to 0.118 Gy. At the 600-day time point BALB/c female mice irradiated with 0.2 Gy did, like sham-irradiated, not show preferential exploration of the novel object that was seen in mice irradiated with 0.118 or 0.4 Gy. In C3H male mice exposed to 0.4 Gy and at the 600-day time point, increased measures of anxiety were observed on days 1 and 2 in the open field. Thus, different outcome measures show distinct dose-response relationships, with some anticipated to worsen performance during space missions, like increased measures of anxiety, while other anticipated to enhance performance, such as increased nest building and object recognition.


Assuntos
Ansiedade/etiologia , Comportamento Animal/efeitos da radiação , Peso Corporal/efeitos da radiação , Atividade Motora/efeitos da radiação , Nêutrons , Fótons , Exposição à Radiação , Reconhecimento Psicológico/efeitos da radiação , Animais , Califórnio , Sinais (Psicologia) , Relação Dose-Resposta à Radiação , Medo/efeitos da radiação , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Comportamento de Nidação/efeitos da radiação , Nêutrons/efeitos adversos , Fótons/efeitos adversos , Exposição à Radiação/efeitos adversos , Caracteres Sexuais , Fatores de Tempo
17.
Radiat Res ; 171(4): 484-93, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19397449

RESUMO

Chromosome aberrations in mitotic bone marrow cells of CBA/Ca and C57BL/6 mice were measured 1 day after exposure to 1 Gy of 1 GeV/nucleon 56Fe ions or 3 Gy of gamma rays. The proportion that have lost a region of chromosome 2 containing the PU.1 gene could be explained by a model based on these measurements. The distribution of aberrations among cells was close to the expected Poisson for the gamma-irradiated cells, but for the HZE 56Fe ions the distribution was highly dispersed. The observations were consistent with the results of an analysis similar to that of Edwards and co-workers in 1980 after ex vivo irradiation of human blood with alpha particles. The analysis used to fit the current data was based on a compound Poisson process, also used previously by others, but in addition included the random nature of parameters involved such as cell nuclear diameter, particle traversal lengths through cell nuclei, production of aberrations, and cell cycle arrest per traversal. From the measured numbers of acentric fragments produced, the relative size of chromosome 2 and the region associated with PU.1 deletions, an independent prediction of PU.1 loss agreed well with measurements described in the accompanying paper.


Assuntos
Regulação Leucêmica da Expressão Gênica , Ferro , Leucemia/etiologia , Leucemia/metabolismo , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Aberrações Cromossômicas , Cromossomos , Raios gama , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Radiometria , Raios X
18.
Radiat Res ; 171(4): 474-83, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19397448

RESUMO

Since deletion of the PU.1 gene on chromosome 2 is a crucial acute myeloid leukemia (AML) initiating step in the mouse model, we quantified PU.1 deleted cells in the bone marrow of gamma-, X- and 56Fe-ion-irradiated mice at various times postirradiation. Although 56Fe ions were initially some two to three times more effective than X or gamma rays in inducing PU.1 deletions, by 1 month postirradiation, the proportions of cells with PU.1 deletions were similar for the HZE particles and the sparsely ionizing radiations. These results indicate that while 56Fe ions are more effective in inducing PU.1 deletions, they are also more effective in causing collateral damage that removes hit cells from the bone marrow. After X, gamma or 56Fe-ion irradiation, AML-resistant C57BL/6 mice have fewer cells with PU.1 deletions than CBA mice, and those cells do not persist in the bone marrow of the C57B6/6 mice. Our findings suggest that quantification of PU.1 deleted bone marrow cells 1 month postirradiation can be used as surrogate for the incidence of radiation-induced AML measured in large-scale mouse studies. If so, PU.1 loss could be used to systematically assess the potential leukemogenic effects of other ions and energies in the space radiation environment.


Assuntos
Regulação Leucêmica da Expressão Gênica , Ferro , Leucemia/etiologia , Leucemia/metabolismo , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Cromossomos , Cromossomos Artificiais Bacterianos/metabolismo , Relação Dose-Resposta à Radiação , Raios gama , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Raios X
19.
Radiat Res ; 172(2): 213-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19630525

RESUMO

Abstract Estimates of cancer risks posed to space-flight crews by exposure to high atomic number, high-energy (HZE) ions are subject to considerable uncertainty because epidemiological data do not exist for human populations exposed to similar radiation qualities. We assessed the leukemogenic efficacy of one such HZE species, 1 GeV (56)Fe ions, a component of space radiation, in a mouse model for radiation-induced acute myeloid leukemia. CBA/CaJ mice were irradiated with 1 GeV/nucleon (56)Fe ions or (137)Cs gamma rays and followed until they were moribund or to 800 days of age. We found that 1 GeV/nucleon (56)Fe ions do not appear to be substantially more effective than gamma rays for the induction of acute myeloid leukemia (AML). However, (56)Fe-ion-irradiated mice had a much higher incidence of hepatocellular carcinoma (HCC) than gamma-irradiated mice, with an estimated RBE of approximately 50. These data suggest a difference in the effects of HZE iron ions on the induction of leukemia compared to solid tumors, suggesting potentially different mechanisms of tumorigenesis.


Assuntos
Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/veterinária , Leucemia Mieloide/epidemiologia , Leucemia Mieloide/veterinária , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/veterinária , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/veterinária , Animais , Radiação Cósmica , Relação Dose-Resposta à Radiação , Íons Pesados , Incidência , Ferro , Masculino , Camundongos , Doses de Radiação , Medição de Risco/métodos , Fatores de Risco , Irradiação Corporal Total/estatística & dados numéricos
20.
Radiat Res ; 191(1): 67-75, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30398394

RESUMO

The risk of developing radiation-induced lung cancer differs between different strains of mice, but the underlying cause of the strain differences is unknown. Strains of mice also differ in how quickly they repair radiation-induced DNA double-strand breaks (DSBs). We assayed mouse strains from the CcS/Dem recombinant congenic strain set for their efficacy in repairing DNA DSBs during protracted irradiation. We measured unrepaired γ-H2AX radiation-induced foci (RIF), which persisted after chronic 24-h gamma irradiation, as a surrogate marker for repair efficiency in bronchial epithelial cells for 17 of the CcS/Dem strains and the BALB/c founder strain. We observed a very strong correlation (R2 = 79.18%, P < 0.001) between the level of unrepaired RIF and radiogenic lung cancer incidence measured in the same strains. Interestingly, spontaneous levels of foci in nonirradiated mice also showed good correlation with lung cancer incidence when incidence data from male and female mice were combined. These results suggest that genetic differences in DNA repair capacity largely account for differing susceptibilities to radiation-induced lung cancer among CcS/Dem mouse strains, and that high levels of spontaneous DNA damage are also a relatively good marker of cancer predisposition. In a smaller pilot study, we found that the repair capacity measured in peripheral blood leucocytes also correlated well with radiogenic lung cancer susceptibility, raising the possibility that the assay could be used to detect radiogenic lung cancer susceptibility in humans.


Assuntos
Brônquios/metabolismo , Histonas/metabolismo , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Neoplasias Induzidas por Radiação/metabolismo , Animais , Brônquios/citologia , Quebras de DNA de Cadeia Dupla , Células Epiteliais/metabolismo , Feminino , Predisposição Genética para Doença , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA