Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(3): 684-694.e9, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768891

RESUMO

Monkeypox (MPXV) and cowpox (CPXV) are emerging agents that cause severe human infections on an intermittent basis, and variola virus (VARV) has potential for use as an agent of bioterror. Vaccinia immune globulin (VIG) has been used therapeutically to treat severe orthopoxvirus infections but is in short supply. We generated a large panel of orthopoxvirus-specific human monoclonal antibodies (Abs) from immune subjects to investigate the molecular basis of broadly neutralizing antibody responses for diverse orthopoxviruses. Detailed analysis revealed the principal neutralizing antibody specificities that are cross-reactive for VACV, CPXV, MPXV, and VARV and that are determinants of protection in murine challenge models. Optimal protection following respiratory or systemic infection required a mixture of Abs that targeted several membrane proteins, including proteins on enveloped and mature virion forms of virus. This work reveals orthopoxvirus targets for human Abs that mediate cross-protective immunity and identifies new candidate Ab therapeutic mixtures to replace VIG.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Infecções por Poxviridae/imunologia , Varíola Bovina/imunologia , Vírus da Varíola Bovina/imunologia , Reações Cruzadas , Humanos , Leucócitos Mononucleares/imunologia , Mpox/imunologia , Monkeypox virus/imunologia , Varíola/imunologia , Vacínia/imunologia , Vaccinia virus/imunologia , Vírus da Varíola/imunologia
2.
N Engl J Med ; 389(25): 2355-2362, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38118023

RESUMO

Melioidosis, caused by Burkholderia pseudomallei, is a rare but potentially fatal bacterial disease endemic to tropical and subtropical regions worldwide. It is typically acquired through contact with contaminated soil or fresh water. Before this investigation, B. pseudomallei was not known to have been isolated from the environment in the continental United States. Here, we report on three patients living in the same Mississippi Gulf Coast county who presented with melioidosis within a 3-year period. They were infected by the same Western Hemisphere B. pseudomallei strain that was discovered in three environmental samples collected from the property of one of the patients. These findings indicate local acquisition of melioidosis from the environment in the Mississippi Gulf Coast region.


Assuntos
Burkholderia pseudomallei , Microbiologia Ambiental , Melioidose , Humanos , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/isolamento & purificação , Melioidose/epidemiologia , Melioidose/microbiologia , Estados Unidos/epidemiologia
3.
N Engl J Med ; 386(9): 861-868, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35235727

RESUMO

Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an uncommon infection that is typically associated with exposure to soil and water in tropical and subtropical environments. It is rarely diagnosed in the continental United States. Patients with melioidosis in the United States commonly report travel to regions where melioidosis is endemic. We report a cluster of four non-travel-associated cases of melioidosis in Georgia, Kansas, Minnesota, and Texas. These cases were caused by the same strain of B. pseudomallei that was linked to an aromatherapy spray product imported from a melioidosis-endemic area.


Assuntos
Aromaterapia/efeitos adversos , Burkholderia pseudomallei/isolamento & purificação , Surtos de Doenças , Melioidose/epidemiologia , Aerossóis , Encéfalo/microbiologia , Encéfalo/patologia , Burkholderia pseudomallei/genética , COVID-19/complicações , Pré-Escolar , Evolução Fatal , Feminino , Genoma Bacteriano , Humanos , Pulmão/microbiologia , Pulmão/patologia , Masculino , Melioidose/complicações , Pessoa de Meia-Idade , Filogenia , Choque Séptico/microbiologia , Estados Unidos/epidemiologia
4.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33833080

RESUMO

Epidemics generally spread through a succession of waves that reflect factors on multiple timescales. On short timescales, superspreading events lead to burstiness and overdispersion, whereas long-term persistent heterogeneity in susceptibility is expected to lead to a reduction in both the infection peak and the herd immunity threshold (HIT). Here, we develop a general approach to encompass both timescales, including time variations in individual social activity, and demonstrate how to incorporate them phenomenologically into a wide class of epidemiological models through reparameterization. We derive a nonlinear dependence of the effective reproduction number [Formula: see text] on the susceptible population fraction S. We show that a state of transient collective immunity (TCI) emerges well below the HIT during early, high-paced stages of the epidemic. However, this is a fragile state that wanes over time due to changing levels of social activity, and so the infection peak is not an indication of long-lasting herd immunity: Subsequent waves may emerge due to behavioral changes in the population, driven by, for example, seasonal factors. Transient and long-term levels of heterogeneity are estimated using empirical data from the COVID-19 epidemic and from real-life face-to-face contact networks. These results suggest that the hardest hit areas, such as New York City, have achieved TCI following the first wave of the epidemic, but likely remain below the long-term HIT. Thus, in contrast to some previous claims, these regions can still experience subsequent waves.


Assuntos
COVID-19 , Epidemias , Imunidade Coletiva , Modelos Imunológicos , SARS-CoV-2/imunologia , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/transmissão , Humanos , Estados Unidos/epidemiologia
5.
Emerg Infect Dis ; 29(3): 618-621, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823515

RESUMO

Burkholderia thailandensis, an opportunistic pathogen found in the environment, is a bacterium closely related to B. pseudomallei, the cause of melioidosis. Human B. thailandensis infections are uncommon. We isolated B. thailandensis from water in Texas and Puerto Rico and soil in Mississippi in the United States, demonstrating a potential public health risk.


Assuntos
Infecções por Burkholderia , Burkholderia pseudomallei , Burkholderia , Melioidose , Estados Unidos , Humanos , Infecções por Burkholderia/microbiologia
6.
Emerg Infect Dis ; 27(12): 3030-3035, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34570693

RESUMO

Nearly all cases of melioidosis in the continental United States are related to international travel to areas to which Burkholderia pseudomallei, the bacterium that causes melioidosis, is endemic. We report the diagnosis and clinical course of melioidosis in a patient from the United States who had no international travel history and the public health investigation to determine the source of exposure. We tested environmental samples collected from the patient's home for B. pseudomallei by PCR and culture. Whole-genome sequencing was conducted on PCR-positive environmental samples, and results were compared with sequences from the patient's clinical specimen. Three PCR-positive environmental samples, all collected from a freshwater home aquarium that had contained imported tropical fish, were a genetic match to the clinical isolate from the patient. This finding suggests a novel route of exposure and a potential for importation of B. pseudomallei, a select agent, into the United States from disease-endemic areas.


Assuntos
Burkholderia pseudomallei , Melioidose , Animais , Burkholderia pseudomallei/genética , Água Doce , Humanos , Melioidose/diagnóstico , Melioidose/epidemiologia , Reação em Cadeia da Polimerase , Estados Unidos/epidemiologia , Sequenciamento Completo do Genoma
7.
Am J Public Health ; 111(5): 907-916, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33734845

RESUMO

Objectives. To assess SARS-CoV-2 transmission within a correctional facility and recommend mitigation strategies.Methods. From April 29 to May 15, 2020, we established the point prevalence of COVID-19 among incarcerated persons and staff within a correctional facility in Arkansas. Participants provided respiratory specimens for SARS-CoV-2 testing and completed questionnaires on symptoms and factors associated with transmission.Results. Of 1647 incarcerated persons and 128 staff tested, 30.5% of incarcerated persons (range by housing unit = 0.0%-58.2%) and 2.3% of staff tested positive for SARS-CoV-2. Among those who tested positive and responded to symptom questions (431 incarcerated persons, 3 staff), 81.2% and 33.3% were asymptomatic, respectively. Most incarcerated persons (58.0%) reported wearing cloth face coverings 8 hours or less per day, and 63.3% reported close contact with someone other than their bunkmate.Conclusions. If testing remained limited to symptomatic individuals, fewer cases would have been detected or detection would have been delayed, allowing transmission to continue. Rapid implementation of mass testing and strict enforcement of infection prevention and control measures may be needed to mitigate spread of SARS-CoV-2 in this setting.


Assuntos
Teste para COVID-19 , COVID-19 , Estabelecimentos Correcionais/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Arkansas/epidemiologia , COVID-19/epidemiologia , COVID-19/transmissão , Habitação/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Prisioneiros/estatística & dados numéricos , Inquéritos e Questionários
8.
Phys Rev Lett ; 124(17): 171301, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412289

RESUMO

We demonstrate that gravitational waves generated by efficient gauge preheating after axion inflation generically contribute significantly to the effective number of relativistic degrees of freedom N_{eff}. We show that, with existing Planck limits, gravitational waves from preheating already place the strongest constraints on the inflaton's possible axial coupling to Abelian gauge fields. We demonstrate that gauge preheating can completely reheat the Universe regardless of the inflationary potential. Further, we quantify the variation of the efficiency of gravitational wave production from model to model and show that it is correlated with the tensor-to-scalar ratio. In particular, when combined with constraints on models whose tensor-to-scalar ratios would be detected by next-generation cosmic microwave background experiments, r≳10^{-3}, constraints from N_{eff} will probe or rule out the entire coupling regime for which gauge preheating is efficient.

9.
MMWR Morb Mortal Wkly Rep ; 69(23): 714-721, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32525850

RESUMO

Compared with the volume of data on coronavirus disease 2019 (COVID-19) outbreaks among older adults, relatively few data are available concerning COVID-19 in younger, healthy persons in the United States (1,2). In late March 2020, the aircraft carrier USS Theodore Roosevelt arrived at port in Guam after numerous U.S. service members onboard developed COVID-19. In April, the U.S. Navy and CDC investigated this outbreak, and the demographic, epidemiologic, and laboratory findings among a convenience sample of 382 service members serving aboard the aircraft carrier are reported in this study. The outbreak was characterized by widespread transmission with relatively mild symptoms and asymptomatic infection among this sample of mostly young, healthy adults with close, congregate exposures. Service members who reported taking preventive measures had a lower infection rate than did those who did not report taking these measures (e.g., wearing a face covering, 55.8% versus 80.8%; avoiding common areas, 53.8% versus 67.5%; and observing social distancing, 54.7% versus 70.0%, respectively). The presence of neutralizing antibodies, which represent antibodies that inhibit SARS-CoV-2, among the majority (59.2%) of those with antibody responses is a promising indicator of at least short-term immunity. This report improves the understanding of COVID-19 in the U.S. military and among young adults in congregate settings and reinforces the importance of preventive measures to lower risk for infection in similar environments.


Assuntos
Aeronaves , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Surtos de Doenças , Militares/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Feminino , Humanos , Masculino , Pandemias , SARS-CoV-2 , Estados Unidos/epidemiologia , Adulto Jovem
13.
Cell Microbiol ; 16(4): 504-18, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24152301

RESUMO

Polymorphonuclear leucocytes (PMNs) play a protective role during Bacillus anthracis infection. However, B. anthracis is able to subvert the PMN response effectively as evidenced by the high mortality rates of anthrax. One major virulence factor produced by B. anthracis, lethal toxin (LT), is necessary for dissemination in the BSL2 model of mouse infection. While human and mouse PMNs kill vegetative B. anthracis, short in vitro half-lives of PMNs have made it difficult to determine how or if LT alters their bactericidal function. Additionally, the role of LT intoxication on PMN's ability to migrate to inflammatory signals remains controversial. LF concentrations in both serum and major organs were determined from mice infected with B. anthracis Sterne strain at defined stages of infection to guide subsequent administration of purified toxin. Bactericidal activity of PMNs assessed using ex vivo cell culture assays showed significant defects in killing B. anthracis. In vivo PMN recruitment to inflammatory stimuli was significantly impaired at 24 h as assessed by real-time analysis of light-producing PMNs within the mouse. The observations described above suggest that LT serves dual functions; it both attenuates accumulation of PMNs at sites of inflammation and impairs PMNs bactericidal activity against vegetative B. anthracis.


Assuntos
Antígenos de Bactérias/imunologia , Antígenos de Bactérias/toxicidade , Bacillus anthracis/imunologia , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/toxicidade , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Estruturas Animais/química , Animais , Antraz/imunologia , Antraz/microbiologia , Antígenos de Bactérias/análise , Toxinas Bacterianas/análise , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Soro/química
14.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915728

RESUMO

Leptospirosis (caused by pathogenic bacteria in the genus Leptospira ) is prevalent worldwide but more common in tropical and subtropical regions. Transmission can occur following direct exposure to infected urine from reservoir hosts, such as rats, or a urine-contaminated environment, which then can serve as an infection source for additional rats and other mammals, including humans. The brown rat, Rattus norvegicus , is an important reservoir of leptospirosis in urban settings. We investigated leptospirosis among brown rats in Boston, Massachusetts and hypothesized that rat dispersal in this urban setting influences the movement, persistence, and diversity of Leptospira . We analyzed DNA from 328 rat kidney samples collected from 17 sites in Boston over a seven-year period (2016-2022); 59 rats representing 12 of 17 sites were positive for Leptospira . We used 21 neutral microsatellite loci to genotype 311 rats and utilized the resulting data to investigate genetic connectivity among sampling sites. We generated whole genome sequences for 28 Leptospira isolates obtained from frozen and fresh tissue from some of the 59 Leptospira -positive rat kidneys. When isolates were not obtained, we attempted Leptospira genomic DNA capture and enrichment, which yielded 14 additional Leptospira genomes from rats. We also generated an enriched Leptospira genome from a 2018 human case in Boston. We found evidence of high genetic structure and limited dispersal among rat populations that is likely influenced by major roads and/or other unknown dispersal barriers, resulting in distinct rat population groups within the city; at certain sites these groups persisted for multiple years. We identified multiple distinct phylogenetic clades of L. interrogans among rats, with specific clades tightly linked to distinct rat populations. This pattern suggests L. interrogans persists in local rat populations and movement of leptospirosis in this urban rat community is driven by rat dispersal. Finally, our genomic analyses of the 2018 human leptospirosis case in Boston suggests a link to rats as the source. These findings will be useful for guiding rat control and human leptospirosis mitigation efforts in this and other urban settings.

15.
Microorganisms ; 11(5)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37317256

RESUMO

Because they are difficult to culture, obtaining genomic information from Leptospira spp. is challenging, hindering the overall understanding of leptospirosis. We designed and validated a culture-independent DNA capture and enrichment system for obtaining Leptospira genomic information from complex human and animal samples. It can be utilized with a variety of complex sample types and diverse species as it was designed using the pan-genome of all known pathogenic Leptospira spp. This system significantly increases the proportion of Leptospira DNA contained within DNA extracts obtained from complex samples, oftentimes reaching >95% even when some estimated starting proportions were <1%. Sequencing enriched extracts results in genomic coverage similar to sequenced isolates, thereby enabling enriched complex extracts to be analyzed together with whole genome sequences from isolates, which facilitates robust species identification and high-resolution genotyping. The system is flexible and can be readily updated when new genomic information becomes available. Implementation of this DNA capture and enrichment system will improve efforts to obtain genomic data from unculturable Leptospira-positive human and animal samples. This, in turn, will lead to a better understanding of the overall genomic diversity and gene content of Leptospira spp. that cause leptospirosis, aiding epidemiology and the development of improved diagnostics and vaccines.

16.
Infect Immun ; 80(5): 1626-33, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22354031

RESUMO

Since 1957, it has been proposed that the dissemination of inhalational anthrax required spores to be transported from the lumena of the lungs into the lymphatic system. In 2002, this idea was expanded to state that alveolar macrophages act as a "Trojan horse" capable of transporting spores across the lung epithelium into draining mediastinal lymph nodes. Since then, the Trojan horse model of dissemination has become the most widely cited model of inhalational infection as well as the focus of the majority of studies aiming to understand events initiating inhalational anthrax infections. However, recent observations derived from animal models of Bacillus anthracis infection are inconsistent with aspects of the Trojan horse model and imply that bacterial dissemination patterns during inhalational infection may be more similar to the cutaneous and gastrointestinal forms than previously thought. In light of these studies, it is of significant importance to reassess the mechanisms of inhalational anthrax dissemination, since it is this form of anthrax that is most lethal and of greatest concern when B. anthracis is weaponized. Here we propose a new "jailbreak" model of B. anthracis dissemination which applies to the dissemination of all common manifestations of the disease anthrax. The proposed model impacts the field by deemphasizing the role of host cells as conduits for dissemination and increasing the role of phagocytes as central players in innate defenses, while moving the focus toward interactions between B. anthracis and lymphoid and epithelial tissues.


Assuntos
Antraz/microbiologia , Bacillus anthracis/fisiologia , Macrófagos Alveolares/microbiologia , Animais , Antraz/patologia , Pulmão/citologia , Pulmão/imunologia , Pulmão/microbiologia , Dermatopatias Bacterianas , Esporos Bacterianos
17.
Pathogens ; 11(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35745544

RESUMO

Anthrax has been feared for its high mortality in animals and humans for centuries. The etiologic agent is considered a potentially devastating bioweapon, and since 1876-when Robert Koch demonstrated that Bacillus anthracis caused anthrax-it has been considered the sole cause of the disease. Anthrax is, however, a toxin-mediated disease. The toxins edema toxin and lethal toxin are formed from protein components encoded for by the pXO1 virulence plasmid present in pathogenic B. anthracis strains. However, other members of the Bacillus cereus group, to which B. anthracis belongs, have recently been shown to harbor the pXO1 plasmid and produce anthrax toxins. Infection with these Bacillus cereus group organisms produces a disease clinically similar to anthrax. This suggests that anthrax should be defined by the exotoxins encoded for by the pXO1 plasmid rather than the bacterial species it has historically been associated with, and that the definition of anthrax should be expanded to include disease caused by any member of the B. cereus group containing the toxin-producing pXO1 plasmid or anthrax toxin genes specifically.

18.
Pathogens ; 11(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36014977

RESUMO

Anthrax-causing members of Bacillus cereus sensu lato (s.l.) pose a serious threat to public health. While most anthrax-causing strains resemble B. anthracis phenotypically, rare cases of anthrax-like illness caused by strains resembling "B. cereus" have been reported. Here, whole-genome sequencing was used to characterize three B. cereus s.l. isolates associated with two 2020 welder anthrax cases in the United States, which resembled "B. cereus" phenotypically. Comparison of the three genomes sequenced here to all publicly available, high-quality B. cereus s.l. genomes (n = 2890 total genomes) demonstrated that genomes associated with each case effectively belonged to separate species at the conventional 95% average nucleotide identity prokaryotic species threshold. Two PubMLST sequence type 78 (ST78) genomes affiliated with a case in Louisiana were most closely related to B. tropicus and possessed genes encoding the Bps exopolysaccharide capsule, as well as hemolysin BL (Hbl) and cytotoxin K (CytK). Comparatively, a ST108 genome associated with a case in Texas was most closely related to B. anthracis; however, like other anthrax-causing strains most closely related to B. anthracis, this genome did not possess Bps-, Hbl-, or CytK-encoding genes. Overall, results presented here provide insights into the evolution of anthrax-causing B. cereus s.l.

19.
PLoS One ; 17(7): e0270997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35905049

RESUMO

Melioidosis is an underreported human disease of tropical and sub-tropical regions caused by the saprophyte Burkholderia pseudomallei. Although most global melioidosis cases are reported from tropical regions in Southeast Asia and northern Australia, there are multiple occurrences from sub-tropical regions, including the United States (U.S.). Most melioidosis cases reported from the continental U.S. are the result of acquiring the disease during travel to endemic regions or from contaminated imported materials. Only two human melioidosis cases from the continental U.S. have likely acquired B. pseudomallei directly from local environments and these cases lived only ~7 km from each other in rural Texas. In this study, we assessed the risk of acquiring melioidosis from the environment within the continental U.S. by surveying for B. pseudomallei in the environment in Texas where these two human melioidosis cases likely acquired their infections. We sampled the environment near the homes of the two cases and at additional sampling locations in surrounding counties in Texas that were selected based on ecological niche modeling. B. pseudomallei was not detected at the residences of these two cases or in the surrounding region. These negative data are important to demonstrate that B. pseudomallei is rare in the environment in the U.S. even at locations where locally acquired human cases likely have occurred, documenting the low risk of acquiring B. pseudomallei infection from the environment in the continental U.S.


Assuntos
Burkholderia pseudomallei , Melioidose , Austrália/epidemiologia , Humanos , Melioidose/epidemiologia , Texas , Viagem , Estados Unidos/epidemiologia
20.
Comp Med ; 72(6): 394-402, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36744511

RESUMO

Melioidosis, a potentially fatal infectious disease of humans and animals, including nonhuman primates (NHPs), is caused by the high-consequence pathogen Burkholderia pseudomallei. This environmental bacterium is found in the soil and water of tropical regions, such as Southeast Asia, where melioidosis is endemic. The global movement of humans and animals can introduce B. pseudomallei into nonendemic regions of the United States, where environmental conditions could allow establishment of the organism. Approximately 60% of NHPs imported into the United States originate in countries considered endemic for melioidosis. To prevent the introduction of infectious agents to the United States, the Centers for Disease Control and Prevention (CDC) requires newly imported NHPs to be quarantined for at least 31 d, during which time their health is closely monitored. Most diseases of public health concern that are transmissible from imported NHPs have relatively short incubation periods that fall within the 31-d quarantine period. However, animals infected with B. pseudomallei may appear healthy for months to years before showing signs of illness, during which time they can shed the organism into the environment. Melioidosis presents diagnostic challenges because it causes nonspecific clinical signs, serologic screening can produce unreliable results, and culture isolates are often misidentified on rapid commercial testing systems. Here, we present a case of melioidosis in a cynomolgus macaque (Macaca fascicularis) that developed a subcutaneous abscess after importation from Cambodia to the United States. The bacterial isolate from the abscess was initially misidentified on a commercial test. This case emphasizes the possibility of melioidosis in NHPs imported from endemic countries and its associated diagnostic challenges. If melioidosis is suspected, diagnostic samples and culture isolates should be submitted to a laboratory in the CDC Laboratory Response Network for conclusive identification and characterization of the pathogen.


Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Estados Unidos , Animais , Melioidose/diagnóstico , Melioidose/epidemiologia , Melioidose/veterinária , Macaca fascicularis , Abscesso , Camboja
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA