Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pain ; 17: 17448069211033172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34284652

RESUMO

Fabry disease (FD) is a progressive, X-linked inherited disorder of glycosphingolipid metabolism due to deficient or absent lysosomal α-galactosidase A (α-Gal A) activity which results in progressive accumulation of globotriaosylceramide (Gb3) and related metabolites. One prominent feature of Fabry disease is neuropathic pain. Accumulation of Gb3 has been documented in dorsal root ganglia (DRG) as well as other neurons, and has lately been associated with the mechanism of pain though the pathophysiology is still unclear. Small fiber (SF) neuropathy in FD differs from other entities in several aspects related to the perception of pain, alteration of fibers as well as drug therapies used in the practice with patients, with therapies far from satisfying. In order to develop better treatments, more information on the underlying mechanisms of pain is needed. Research in neuropathy has gained momentum from the development of preclinical models where different aspects of pain can be modelled and further analyzed. This review aims at describing the different in vitro and FD animal models that have been used so far, as well as some of the insights gained from their use. We focus especially in recent findings associated with ion channel alterations -that apart from the vascular alterations-, could provide targets for improved therapies in pain.


Assuntos
Doença de Fabry , Animais , Doença de Fabry/complicações , Gânglios Espinais/metabolismo , Humanos , Canais Iônicos , Dor , alfa-Galactosidase/metabolismo
2.
Hum Mol Genet ; 26(12): 2321-2334, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28398512

RESUMO

Mutations of various genes cause hereditary spastic paraplegia (HSP), a neurological disease involving dying-back degeneration of upper motor neurons. From these, mutations in the SPAST gene encoding the microtubule-severing protein spastin account for most HSP cases. Cumulative genetic and experimental evidence suggests that alterations in various intracellular trafficking events, including fast axonal transport (FAT), may contribute to HSP pathogenesis. However, the mechanisms linking SPAST mutations to such deficits remain largely unknown. Experiments presented here using isolated squid axoplasm reveal inhibition of FAT as a common toxic effect elicited by spastin proteins with different HSP mutations, independent of microtubule-binding or severing activity. Mutant spastin proteins produce this toxic effect only when presented as the tissue-specific M1 isoform, not when presented as the ubiquitously-expressed shorter M87 isoform. Biochemical and pharmacological experiments further indicate that the toxic effects of mutant M1 spastins on FAT involve casein kinase 2 (CK2) activation. In mammalian cells, expression of mutant M1 spastins, but not their mutant M87 counterparts, promotes abnormalities in the distribution of intracellular organelles that are correctable by pharmacological CK2 inhibition. Collectively, these results demonstrate isoform-specific toxic effects of mutant M1 spastin on FAT, and identify CK2 as a critical mediator of these effects.


Assuntos
Adenosina Trifosfatases/genética , Transporte Axonal/genética , Adenosina Trifosfatases/metabolismo , Animais , Transporte Axonal/fisiologia , Caseína Quinase II/metabolismo , Células Cultivadas , Decapodiformes , Modelos Animais de Doenças , Fibroblastos , Humanos , Microtúbulos/metabolismo , Neurônios Motores/metabolismo , Proteínas Mutantes/metabolismo , Mutação , Isoformas de Proteínas/genética , Transporte Proteico/fisiologia , Ratos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Espastina
3.
Synapse ; 73(10): e22120, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31180161

RESUMO

Extracellular pH changes may constitute significant signals for neuronal communication. During synaptic transmission, changes in pH in the synaptic cleft take place. Its role in the regulation of presynaptic Ca2+ currents through multivesicular release in ribbon-type synapses is a proven phenomenon. In recent years, protons have been recognized as neurotransmitters that participate in neuronal communication in synapses of several regions of the CNS such as amygdala, nucleus accumbens, and brainstem. Protons are released by nerve stimulation and activate postsynaptic acid-sensing ion channels (ASICs). Several types of ASIC channels are expressed in the peripheral and central nervous system. The influx of Ca2+ through some subtypes of ASICs, as a result of synaptic transmission, agrees with the participation of ASICs in synaptic plasticity. Pharmacological and genetical inhibition of ASIC1a results in alterations in learning, memory, and phenomena like fear and cocaine-seeking behavior. The recognition of endogenous molecules, such as arachidonic acid, cytokines, histamine, spermine, lactate, and neuropeptides, capable of inhibiting or potentiating ASICs suggests the existence of mechanisms of synaptic modulation that have not yet been fully identified and that could be tuned by new emerging pharmacological compounds with potential therapeutic benefits.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Encéfalo/fisiologia , Prótons , Transmissão Sináptica/fisiologia , Animais , Humanos
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166927, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37907140

RESUMO

Cytokines, particularly IL-6, play a crucial role in modulating immune responses in the central nervous system (CNS). Elevated IL-6 levels have been observed in neuroinflammatory conditions, as well as in the sera and brains of patients with neurodegenerative diseases such as Parkinson's, Huntington's, Multiple Sclerosis, and Alzheimer's. Additionally, alterations in regional brain pH have been noted in these conditions. Acid-sensing ion channels (ASICs), including ASIC1a, activated by low pH levels, are highly abundant in the CNS and have recently been associated with various neurological disorders. Our study examined the impact of IL-6 on ASIC1a channels in cell cultures, demonstrating IL-6-induced the redistribution of cytosolic ASIC1a channels to the cell membrane. This redistribution was accompanied by increased ASIC1a current amplitude upon activation, as well as elevated levels of phosphorylated CaMKII and ERK kinases. Additionally, we observed posttranslational modifications on the ASIC1a channel itself. These findings provide insight into a potential link between inflammatory processes and neurodegenerative mechanisms, highlighting ASIC1a channels as promising therapeutic targets in these conditions.


Assuntos
Interleucina-6 , Doenças Neuroinflamatórias , Humanos , Canais Iônicos Sensíveis a Ácido/genética
5.
Neural Regen Res ; 17(5): 983-986, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34558512

RESUMO

During the last decades, advances in the understanding of genetic, cellular, and microstructural alterations associated to Huntington's disease (HD) have improved the understanding of this progressive and fatal illness. However, events related to early neuropathological events, neuroinflammation, deterioration of neuronal connectivity and compensatory mechanisms still remain vastly unknown. Ultra-high field diffusion MRI (UHFD-MRI) techniques can contribute to a more comprehensive analysis of the early microstructural changes observed in HD. In addition, it is possible to evaluate if early imaging microstructural parameters might be linked to histological biomarkers. Moreover, qualitative studies analyzing histological complexity in brain areas susceptible to neurodegeneration could provide information on inflammatory events, compensatory increase of neuroconnectivity and mechanisms of brain repair and regeneration. The application of ultra-high field diffusion-MRI technology in animal models, particularly the R6/1 mice (a common preclinical mammalian model of HD), provide the opportunity to analyze alterations in a physiologically intact model of the disease. Although some disparities in volumetric changes across different brain structures between preclinical and clinical models has been documented, further application of different diffusion MRI techniques used in combination like diffusion tensor imaging, and neurite orientation dispersion and density imaging have proved effective in characterizing early parameters associated to alteration in water diffusion exchange within intracellular and extracellular compartments in brain white and grey matter. Thus, the combination of diffusion MRI imaging techniques and more complex neuropathological analysis could accelerate the discovery of new imaging biomarkers and the early diagnosis and neuromonitoring of patients affected with HD.

6.
Membranes (Basel) ; 12(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448360

RESUMO

Proteins in eukaryotic cells reside in different cell compartments. Many studies require the specific localization of proteins and the detection of any dynamic changes in intracellular protein distribution. There are several methods available for this purpose that rely on the fractionation of the different cell compartments. Fractionation protocols have evolved since the first use of a centrifuge to isolate organelles. In this study, we described a simple method that involves the use of a tabletop centrifuge and different detergents to obtain cell fractions enriched in cytosolic (Cyt), plasma membrane (PM), membranous organelle (MO), and nuclear (Nu) proteins and identify the proteins in each fraction. This method serves to identify transmembrane proteins such as channel subunits as well as PM-embedded or weakly associated proteins. This protocol uses a minute amount of cell material and typical equipment present in laboratories, and it takes approximately 3 h. The process was validated using endogenous and exogenous proteins expressed in the HEK293T cell line that were targeted to each compartment. Using a specific stimulus as a trigger, we showed and quantified the shuttling of a protein channel (ASIC1a, acid sensing ion channel) from the MO fraction to the PM fraction and the shuttling of a kinase from a cytosolic location to a nuclear location.

7.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36558990

RESUMO

BACKGROUND: Hindpaw injection of formalin in rodents is used to assess acute persistent pain. The response to formalin is biphasic. The initial response (first minutes) is thought to be linked to inflammatory, peripheral mechanisms, while the latter (around 30 min after the injection), is linked to central mechanisms. This model is useful to analyze the effect of drugs at one or both phases, and the involvement of ion channels in the response. Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in pain conditions. Recently, psalmotoxin-1 (Pctx-1), a toxin that inhibits ASIC1a-constituted channels, and antisense ASIC1a-RNA, intrathecal administered in mice were shown to affect both phases of the test. METHODS: The mouse formalin test was performed on C57/BL6 7- to 9-week-old mice. Behavioral tests were conducted and tissue was extracted to detect proteins (ASIC1 and pERK) and ASIC1-mRNA and mir485-5p levels. RESULTS: The injection of formalin was accompanied by an increase in ASIC1 levels. This was detected at the contralateral anterior cingulate cortex (ACC) compared to the ipsilateral side, and both sides of the ACC of vehicle-injected animals. At the spinal cord and dorsal root ganglia, ASIC1 levels followed a gradient stronger at lumbar (L) 3 and decreased towards L5. Gender differences were detected at the ACC; with female mice showing higher ASIC1a levels at the ACC. No significant changes in ASIC1-mRNA levels were detected. Evidence suggests ASIC1 upregulation depends on regulatory microRNAs. CONCLUSION: This work highlights the important role of ASIC1 in pain and the potential role of pharmacological therapies aimed at this channel.

8.
Traffic ; 10(11): 1655-68, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19744140

RESUMO

During the development of neurons, the microtubule-associated tau proteins show a graded proximo-distal distribution in axons. In tauopathies such as Alzheimer's disease, tau accumulates in the somatodendritic compartment. To scrutinize the determinants of tau's distribution and motion, we constructed photoactivatable green fluorescent protein (GFP)-tagged tau fusion proteins and recorded their distribution after focal activation in living cells. Simulation showed that the motion of tau was compatible with diffusion/reaction as opposed to active transport/reaction. Effective diffusion constants of 0.7-0.8 microm(2)/second were calculated in neurites of PC12 cells and primary cortical neurons. Furthermore, tau's amino terminal projection domain mediated binding and enrichment of tau at distal neurites indicating that the tip of a neurite acts as an adsorber trapping tau protein. Treatment with taxol, incorporation of disease-related tau modifications, experimentally induced hyperphosphorylation and addition of preaggregated amyloid beta peptides (Abeta) increased the effective diffusion constant compatible with a decreased binding to microtubules. Distal enrichment was present after taxol treatment but was suppressed at disease-relevant conditions. The data suggest that (i) dynamic binding of tau to microtubules and diffusion along microtubules and (ii) trapping at the tip of a neurite both contribute to its distribution during development and disease.


Assuntos
Microtúbulos/metabolismo , Movimento (Física) , Neuritos/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo , Animais , Imuno-Histoquímica , Células PC12 , Ligação Proteica , Ratos
9.
Front Cell Neurosci ; 15: 735414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675777

RESUMO

Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases as well as pain conditions. Classically, ASICs are described as transiently activated by a reduced pH, followed by desensitization; the activation allows sodium influx, and in the case of ASIC1a-composed channels, also calcium to some degree. Several factors are emerging and extensively analyzed as modulators, activating, inhibiting, and potentiating specific channel subunits. However, the signaling pathways triggered by channel activation are only starting to be revealed.The channel has been recently shown to be activated through a mechanism other than proton-mediated. Indeed, the large extracellular loop of these channels opens the possibility that other non-proton ligands might exist. One such molecule discovered was a toxin present in the Texas coral snake venom. The finding was associated with the activation of the channel at neutral pH via the toxin and causing intense and unremitting pain.By using different pharmacological tools, we analyzed the downstream signaling pathway triggered either by the proton and non-proton activation for human, mouse, and rat ASIC1a-composed channels in in vitro models. We show that for all species analyzed, the non-protonic mode of activation determines the activation of the ERK signaling cascade at a higher level and duration compared to the proton mode.This study adds to the growing evidence of the important role ASIC1a channels play in different physiological and pathological conditions and also hints at a possible pathological mechanism for a sustained effect.

10.
Neurobiol Aging ; 102: 32-49, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33765430

RESUMO

Diffusion MRI (dMRI) has been able to detect early structural changes related to neurological symptoms present in Huntington's disease (HD). However, there is still a knowledge gap to interpret the biological significance at early neuropathological stages. The purpose of this study is two-fold: (i) establish if the combination of Ultra-High Field Diffusion MRI (UHFD-MRI) techniques can add a more comprehensive analysis of the early microstructural changes observed in HD, and (ii) evaluate if early changes in dMRI microstructural parameters can be linked to cellular biomarkers of neuroinflammation. Ultra-high field magnet (16.7T), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) techniques were applied to fixed ex-vivo brains of a preclinical model of HD (R6/1 mice). Fractional anisotropy (FA) was decreased in deep and superficial grey matter (GM) as well as white matter (WM) brain regions with well-known early HD microstructure and connectivity pathology. NODDI parameters associated with the intracellular and extracellular compartment, such as intracellular ventricular fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fractions (IsoVF) were altered in R6/1 mice GM. Further, histological studies in these areas showed that glia cell markers associated with neuroinflammation (GFAP & Iba1) were consistent with the dMRI findings. dMRI can be used to extract non-invasive information of neuropathological events present in the early stages of HD. The combination of multiple imaging techniques represents a better approach to understand the neuropathological process allowing the early diagnosis and neuromonitoring of patients affected by HD.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/patologia , Animais , Anisotropia , Encéfalo/ultraestrutura , Modelos Animais de Doenças , Inflamação , Camundongos Endogâmicos C57BL
11.
Neurochem Int ; 140: 104824, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32841711

RESUMO

Neuropathic pain is one of the key features of the classical phenotype of Fabry disease (FD). Acid sensing ion channels (ASICs) are H+-gated cation channels, which belong to the epithelial sodium channel/DeGenerin superfamily, sensitive to the diuretic drug Amiloride. Molecular cloning has identified several distinct ASIC subunits. In particular the ASIC1a subunit has been associated to pain and its upregulation has been documented in animal models of pain. We analyzed the expression of ASIC1a channels in cellular models that mimic the accumulation of glycosphingolipids in FD (FD-GLs) like Gb3, and LysoGb3. We used mouse primary neurons from brain cortex and hippocampus -supraspinal structures that accumulate FD-GLs-, as well as HEK293 cells. Incubation with Gb3, lysoGb3 and the inhibitor (1-deoxy-galactonojirymicin, DJG) of the enzyme α-galactosidase A (Gla) lead to the upregulation of ASIC1a channels. In addition, activation of ASIC1a results in the activation of the MAPK ERK pathway, a signaling pathway associated with pain. Moreover, accumulation of glycosphingolipids results in activation of ERK, an effect that was prevented by blocking ASIC1a channels with the specific blocker Psalmotoxin. Our results suggest that FD-GLs accumulation and triggering of the ERK pathway via ASIC channels might be involved in the mechanism responsible for pain in FD, thus providing a new therapeutic target for pain relief treatment.


Assuntos
Canais Iônicos Sensíveis a Ácido/biossíntese , Doença de Fabry/metabolismo , Regulação para Cima/fisiologia , Canais Iônicos Sensíveis a Ácido/genética , Animais , Células Cultivadas , Doença de Fabry/genética , Doença de Fabry/patologia , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/toxicidade , Venenos de Aranha/toxicidade , Regulação para Cima/efeitos dos fármacos
12.
Animal Model Exp Med ; 3(2): 117-129, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32613171

RESUMO

OBJECTIVE: Cell structural changes are one of the main features observed during the development of amyotrophic lateral sclerosis (ALS). In this work, we propose the use of diffusion tensor imaging (DTI) metrics to assess specific ultrastructural changes in the central nervous system during the early neurodegenerative stages of ALS. METHODS: Ultra-high field MRI and DTI data at 17.6T were obtained from fixed, excised mouse brains, and spinal cords from ALS (G93A-SOD1) mice. RESULTS: Changes in fractional anisotropy (FA) and linear, planar, and spherical anisotropy ratios (CL, CP, and CS, respectively) of the diffusion eigenvalues were measured in white matter (WM) and gray matter (GM) areas associated with early axonal degenerative processes (in both the brain and the spinal cord). Specifically, in WM structures (corpus callosum, corticospinal tract, and spinal cord funiculi) as the disease progressed, FA, CL, and CP values decreased, whereas CS values increased. In GM structures (prefrontal cortex, hippocampus, and central spinal cord) FA and CP decreased, whereas the CL and CS values were unchanged or slightly smaller. Histological studies of a fluorescent mice model (YFP, G93A-SOD1 mouse) corroborated the early alterations in neuronal morphology and axonal connectivity measured by DTI. CONCLUSIONS: Changes in diffusion tensor shape were observed in this animal model at the early, nonsymptomatic stages of ALS. Further studies of CL, CP, and CS as imaging biomarkers should be undertaken to refine this neuroimaging tool for future clinical use in the detection of the early stages of ALS.

13.
Curr Med Imaging Rev ; 15(6): 521-542, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32008561

RESUMO

BACKGROUND: Huntington's Disease is an irreversible neurodegenerative disease characterized by the progressive deterioration of specific brain nerve cells. The current evaluation of cellular and physiological events in patients with HD relies on the development of transgenic animal models. To explore such events in vivo, diffusion tensor imaging has been developed to examine the early macro and microstructural changes in brain tissue. However, the gap in diffusion tensor imaging findings between animal models and clinical studies and the lack of microstructural confirmation by histological methods has questioned the validity of this method. OBJECTIVE: This review explores white and grey matter ultrastructural changes associated to diffusion tensor imaging, as well as similarities and differences between preclinical and clinical Huntington's Disease studies. METHODS: A comprehensive review of the literature using online-resources was performed (Pub- Med search). RESULTS: Similar changes in fractional anisotropy as well as axial, radial and mean diffusivities were observed in white matter tracts across clinical and animal studies. However, comparative diffusion alterations in different grey matter structures were inconsistent between clinical and animal studies. CONCLUSION: Diffusion tensor imaging can be related to specific structural anomalies in specific cellular populations. However, some differences between animal and clinical studies could derive from the contrasting neuroanatomy or connectivity across species. Such differences should be considered before generalizing preclinical results into the clinical practice. Moreover, current limitations of this technique to accurately represent complex multicellular events at the single micro scale are real. Future work applying complex diffusion models should be considered.


Assuntos
Imagem de Tensor de Difusão , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/patologia , Animais , Modelos Animais de Doenças , Humanos , Doença de Huntington/etiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-31159586

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease primarily characterized by the progressive impairment of motor functions. However, a significant portion of affected patients develops severe cognitive dysfunction, developing a widespread white (WM) and gray matter (GM) microstructural impairment. The objective of this study is to determine if Gaussian and non-Gaussian diffusion models gathered by ultra-high field diffusion MRI (UHFD-MRI) are an appropriate tool to detect early structural changes in brain white and gray matter in a preclinical model of ALS. ALS brains (G93A-SOD1mice) were scanned in a 16.7 T magnet. Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) have shown presymptomatic decrease in axonal organization by Fractional Anisotropy (FA) and neurite content by Intracellular Volume Fraction (ICVF) across deep WM (corpus callosum) as well as superficial (cortex) and deep (hippocampus) GM. Additional diffusion kurtosis imaging (DKI) analysis demonstrated broader and earlier GM reductions in mean kurtosis (MK), possibly related to the decrease in neuronal complexity. Histological validation was obtained by an ALS fluorescent mice reporter (YFP, G93A-SOD1 mice). The combination of DTI, NODDI, and DKI models have proved to provide a more complete assessment of the early microstructural changes in the ALS brain, particularly in areas associated with high cognitive functions. This comprehensive approach should be considered as a valuable tool for the early detection of neuroimaging markers.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Degeneração Neural/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Esclerose Lateral Amiotrófica/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/genética
15.
J Neurosci Res ; 86(3): 504-11, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17668854

RESUMO

Pathologic alterations in protein dynamics such as changes in protein degradation, accumulation of misfolded proteins, and deficits in cellular transport mechanisms are a common feature of most if not all neurodegenerative diseases. Live cell imaging studies promise to contribute to a better understanding of the molecular mechanisms underlying these diseases by visualizing the turnover, accumulation, and transport of proteins in a living cellular context in real time. In this review, we discuss recent work in which different live cell imaging approaches are applied in cellular models of amyotrophic lateral sclerosis, polyQ diseases, and tauopathies as paradigmatic examples of diseases with different types of alterations in protein dynamics. It becomes evident that live cell imaging studies provide new insights into different aspects of protein dynamics, such as the understanding that aggregates are not as static as concluded from previous studies but exhibit a remarkable molecular exchange and that the dynamicity state of the neuronal cytoskeleton might have a critical role in neuronal degeneration. It can be anticipated that live cell imaging studies will lead to a more dynamic view of protein turnover and aggregation, which may aid in identifying drugs that specifically interfere with disease-related changes.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Humanos , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/química , Doenças Neurodegenerativas/genética , Peptídeos , Dobramento de Proteína , Coloração e Rotulagem , Tauopatias/metabolismo , Repetições de Trinucleotídeos
16.
Brain Res Bull ; 126(Pt 3): 347-353, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27339812

RESUMO

Intracellular trafficking events powered by microtubule-based molecular motors facilitate the targeted delivery of selected molecular components to specific neuronal subdomains. Within this context, we provide a brief review of mechanisms underlying the execution of axonal transport (AT) by conventional kinesin, the most abundant kinesin-related motor protein in the mature nervous system. We emphasize the biochemical heterogeneity of this multi-subunit motor protein, further discussing its significance in light of recent discoveries revealing its regulation by various protein kinases. In addition, we raise issues relevant to the mode of conventional kinesin attachment to cargoes and examine recent evidence linking alterations in conventional kinesin phosphorylation to the pathogenesis of adult-onset neurodegenerative diseases.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Animais , Transporte Axonal/fisiologia , Encéfalo/metabolismo , Humanos , Cinesinas/genética , Doenças Neurodegenerativas/metabolismo
17.
Brain Res Bull ; 90: 107-13, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23063705

RESUMO

We established a cell model to study the acute effects of pregabalin (PGB), a drug widely used in epilepsy and neuropathic pain, on voltage gated Ca(V)2.1 (P/Q-type) calcium channels function and distribution at the membrane level. HEK293t cells were transfected with plasmids coding for all subunits of the Ca(V)2.1 channel. We used a α1 fused to an eGFP tag to follow its distribution in time and at different experimental conditions. The expressed channel was functional as shown by the presence of barium-mediated, calcium currents of transfected cells measured by 'whole-cell voltage-clamp' recordings, showing a maximum current peak in the I-V curve at +20 mV. The GFP fluorescent signal was confined to the periphery of the cells. Incubation with 500 µM PGB, that binds α2δ subunits, for 30 min induced changes in localization of the fluorescent subunits as measured by fluorescent time lapse microscopy. These changes correlated with a reversible reduction of barium currents through Ca(V)2.1 calcium channels under the same conditions. However, no changes in the cellular distribution of the subunits were visualized for cells either expressing another membrane associated protein or after exposure of the Ca(V)2.1 channels to isoleucine, another α2δ ligand. Together these results show strong evidence for an acute effect of PGB on Ca(V)2.1 calcium channels' currents and distribution and suggest that internalization of Ca(V)2.1 channels might be a mechanism of PGB action.


Assuntos
Analgésicos/farmacologia , Canais de Cálcio Tipo N/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Ácido gama-Aminobutírico/análogos & derivados , Biofísica , Canais de Cálcio Tipo N/genética , Estimulação Elétrica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Potenciais da Membrana/genética , Microscopia Confocal , Técnicas de Patch-Clamp , Pregabalina , Transfecção , Ácido gama-Aminobutírico/farmacologia
18.
Methods Enzymol ; 505: 3-21, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22289445

RESUMO

Neurons exhibit high temporal and spatial dynamics of their cytoskeletal organization, which is critical for the development and maintenance of axons and dendrites. Live cell imaging of fluorescence labeled proteins provides a powerful approach to scrutinize the dynamics of cytoskeletal components in living neuronal cells. Here, we describe a method to monitor and quantitatively analyze the dissipation of populations of cytoskeletal proteins in neurites of living cells using fluorescence photoactivation of fusion constructs with photoactivatable GFP (PAGFP). We present considerations on the design of the constructs, methods of gene transfer in neural cell lines and primary neurons, and implementation of photoactivation experiments using standard confocal laser scanning microscopy. In addition, we introduce general methods for data presentation and analysis using paradigmatic experiments of imaging PAGFP-neurofilament, -tubulin, and -tau in neuronally differentiated PC12 cells and primary cortical cultures. Methods include the generation of color-coded plots of 2D space-time intensity function, determination of immobile fractions, intensity shift analyses, and modeling to determine effective diffusion constants.


Assuntos
Rastreamento de Células/métodos , Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde , Microscopia Confocal/métodos , Neurônios/citologia , Animais , Diferenciação Celular , Técnicas de Transferência de Genes , Proteínas Associadas aos Microtúbulos/análise , Microtúbulos , Neurônios/metabolismo , Células PC12 , Ratos , Proteínas Recombinantes de Fusão , Tubulina (Proteína)/análise , Proteínas tau/análise
19.
Neurobiol Aging ; 32(6): 1043-53, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20663588

RESUMO

After approximately 3 weeks in vitro, hippocampal neurons present many of the typical hallmarks accompanying neuronal aging in vivo, including accumulation of reactive oxygen species (ROS), lipofuscin granules, heterochromatic foci, and activation of the Jun N-terminal protein kinase (pJNK) and p53/p21 pathways. In addition, hippocampal neurons in vitro undergo a gradual loss of cholesterol, which is important for the activation of the prosurvival tyrosine kinase receptor TrkB. Here, we used the hippocampal in vitro system to investigate the possible cause of age-accompanying cholesterol loss. We report that cholesterol loss during in vitro aging is paralleled by upregulation and translocation to the neuronal surface of cholesterol-24-hydroxylase (Cyp46), the enzyme responsible for cholesterol removal from neurons. Chronic reduction of electrical activity diminished cholesterol loss in aged neurons and precluded the upregulation of cholesterol-24-hydroxylase. In agreement with a cause-effect relationship, stimulation of excitatory neurotransmission in young neurons led to cholesterol loss. Mechanistically, N-methyl-D-aspartate (NMDA)-mediated excitatory neurotransmission leads to cholesterol loss through generation of reactive oxygen species derived from the activation of the stress-responsive enzyme NADPH oxidase. Supporting the relevance of the in vitro data, reduced cholesterol was also detected in synaptic membranes from old mice brains. Furthermore, excitatory neurotransmission via the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase pathway induced cholesterol loss in purified brain synaptosomes. The current studies highlight excitatory neurotransmission as 1 of the mechanisms involved in cholesterol loss during aging.


Assuntos
Envelhecimento , Colesterol/metabolismo , Hipocampo/citologia , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Transmissão Sináptica/fisiologia , Acetofenonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Biotinilação/métodos , Morte Celular , Colesterol 24-Hidroxilase , Fragmentação do DNA/efeitos dos fármacos , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/farmacologia , NADPH Oxidases/metabolismo , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Transdução de Sinais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Tetrodotoxina/farmacologia , Fatores de Tempo
20.
J Cell Biol ; 192(4): 647-61, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21339331

RESUMO

Changes of the microtubule-associated protein tau are central in Alzheimer's disease (AD) and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17). However, the functional consequence of the FTDP-17 tau mutation R406W, which causes a tauopathy clinically resembling AD, is not well understood. We find that the R406W mutation does not affect microtubule interaction but abolishes tau's membrane binding. Loss of binding is associated with decreased trapping at the tip of neurites and increased length fluctuations during process growth. Tandem affinity purification tag purification and mass spectrometry identify the calcium-regulated plasma membrane-binding protein annexin A2 (AnxA2) as a potential interaction partner of tau. Consistently, wild-type tau but not R406W tau interacts with AnxA2 in a heterologous yeast expression system. Sequestration of Ca(2+) or knockdown of AnxA2 abolishes the differential trapping of wild-type and R406W tau. We suggest that the pathological effect of the R406W mutation is caused by impaired membrane binding, which involves a functional interaction with AnxA2 as a membrane-cytoskeleton linker.


Assuntos
Substituição de Aminoácidos , Membrana Celular/metabolismo , Proteínas tau/genética , Sequência de Aminoácidos , Animais , Anexina A2/química , Anexina A2/metabolismo , Anexina A2/fisiologia , Sítios de Ligação , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Dados de Sequência Molecular , Neuritos/metabolismo , Células PC12 , Fosforilação , Ratos , Proteínas tau/química , Proteínas tau/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA