Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 701, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849726

RESUMO

BACKGROUND: Ovarian cancer is the first cause of death from gynecological malignancies mainly due to development of chemoresistance. Despite the emergence of PARP inhibitors, which have revolutionized the therapeutic management of some of these ovarian cancers, the 5-year overall survival rate remains around 45%. Therefore, it is crucial to develop new therapeutic strategies, to identify predictive biomarkers and to predict the response to treatments. In this context, functional assays based on patient-derived tumor models could constitute helpful and relevant tools for identifying efficient therapies or to guide clinical decision making. METHOD: The OVAREX study is a single-center non-interventional study which aims at investigating the feasibility of establishing in vivo and ex vivo models and testing ex vivo models to predict clinical response of ovarian cancer patients. Patient-Derived Xenografts (PDX) will be established from tumor fragments engrafted subcutaneously into immunocompromised mice. Explants will be generated by slicing tumor tissues and Ascites-Derived Spheroids (ADS) will be isolated following filtration of ascites. Patient-derived tumor organoids (PDTO) will be established after dissociation of tumor tissues or ADS, cell embedding into extracellular matrix and culture in specific medium. Molecular and histological characterizations will be performed to compare tumor of origin and paired models. Response of ex vivo tumor-derived models to conventional chemotherapy and PARP inhibitors will be assessed and compared to results of companion diagnostic test and/or to the patient's response to evaluate their predictive value. DISCUSSION: This clinical study aims at generating PDX and ex vivo models (PDTO, ADS, and explants) from tumors or ascites of ovarian cancer patients who will undergo surgical procedure or paracentesis. We aim at demonstrating the predictive value of ex vivo models for their potential use in routine clinical practice as part of precision medicine, as well as establishing a collection of relevant ovarian cancer models that will be useful for the evaluation of future innovative therapies. TRIAL REGISTRATION: The clinical trial has been validated by local research ethic committee on January 25th 2019 and registered at ClinicalTrials.gov with the identifier NCT03831230 on January 28th 2019, last amendment v4 accepted on July 18, 2023.


Assuntos
Biomarcadores Tumorais , Neoplasias Ovarianas , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Feminino , Humanos , Camundongos , Biomarcadores Tumorais/metabolismo , Modelos Animais de Doenças , Organoides , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Terapias em Estudo/métodos
2.
BMC Cancer ; 23(1): 883, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726786

RESUMO

BACKGROUND: Triple negative breast cancers (TNBC) account for approximately 15% of all breast cancers and are associated with a shorter median survival mainly due to locally advanced tumor and high risk of metastasis. The current neoadjuvant treatment for TNBC consists of a regimen of immune checkpoint blocker and chemotherapy (chemo-ICB). Despite the frequent use of this combination for TNBC treatment, moderate results are observed and its clinical benefit in TNBC remains difficult to predict. Patient-derived tumor organoids (PDTO) are 3D in vitro cellular structures obtained from patient's tumor samples. More and more evidence suggest that these models could predict the response of the tumor from which they are derived. PDTO may thus be used as a tool to predict chemo-ICB efficacy in TNBC patients. METHOD: The TRIPLEX study is a single-center observational study conducted to investigate the feasibility of generating PDTO from TNBC and to evaluate their ability to predict clinical response. PDTO will be obtained after the dissociation of biopsies and embedding into extra cellular matrix. PDTO will be cultured in a medium supplemented with growth factors and signal pathway inhibitors. Molecular and histological analyses will be performed on established PDTO lines to validate their phenotypic proximity with the original tumor. Response of PDTO to chemo-ICB will be assessed using co-cultures with autologous immune cells collected from patient blood samples. PDTO response will finally be compared with the response of the patient to evaluate the predictive potential of the model. DISCUSSION: This study will allow to assess the feasibility of using PDTO as predictive tools for the evaluation of the response of TNBC patients to treatments. In the event that PDTO could faithfully predict patient response in clinically relevant time frames, a prospective clinical trial could be designed to use PDTO to guide clinical decision. This study will also permit the establishment of a living biobank of TNBC PDTO usable for future innovative strategies evaluation. TRIAL REGISTRATION: The clinical trial (version 1.2) has been validated by local research ethic committee on December 30th 2021 and registered at ClinicalTrials.gov with the identifier NCT05404321 on June 3rd 2022, version 1.2.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Medicina de Precisão , Estudos Prospectivos , Organoides , Biópsia
3.
BMC Cancer ; 23(1): 223, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894916

RESUMO

BACKGROUND: Radiotherapy is one of the cornerstones of the treatment of Head and Neck Squamous Cell Carcinomas (HNSCC). However, radioresistance is associated with a high risk of recurrence. To propose strategies (such as combinations with drugs) that could over intrinsic radioresistance, it is crucial to predict the response to treatment. Patient-Derived Tumor Organoids (PDTO) are in vitro tridimensional microtumors obtained from patient' own cancer samples. They have been shown to serve as reliable surrogates of the tumor response in patients. METHODS: The ORGAVADS study is a multicenter observational trial conducted to investigate the feasibility of generating and testing PDTO derived from HNSCC for the evaluation of sensitivity to treatments. PDTO are obtained after dissociation of resected tumors remaining from tissues necessary for the diagnosis. Embedding of tumor cells is then performed in extracellular matrix and culture in medium supplemented with growth factors and inhibitors. Histological and immunohistochemical characterizations are performed to validate the resemblance between PDTO and their original tumor. Response of PDTO to chemotherapy, radiotherapy and innovating combinations are assessed, as well as response to immunotherapy using co-cultures of PDTO with autologous immune cells collected from patient blood samples. Transcriptomic and genetic analyses of PDTO allow validation of the models compared to patients' own tumor and identification of potential predictive biomarkers. DISCUSSION: This study is designed to develop PDTO models from HNSCC. It will allow comparing the response of PDTO to treatment and the clinical response of the patients from whom they are derived. Our aim is to study the PDTO ability to predict the clinical response to treatment for each patient in view of a personalized medicine as well as to establish a collection of HNSCC models that will be useful for future innovative strategies evaluation. TRIAL REGISTRATION: NCT04261192, registered February 7, 2020, last amendment v4 accepted on June, 2021.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/patologia , Terapias em Estudo , Organoides/patologia
4.
Biol Cell ; 114(1): 32-55, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34561874

RESUMO

BACKGROUND INFORMATION: Although improvements have been made in the management of pancreatic adenocarcinoma (PDAC) during the past 20 years, the prognosis of this deadly disease remains poor with an overall 5-year survival under 10%. Treatment with FOLFIRINOX, a combined regimen of 5-fluorouracil, irinotecan (SN-38) and oxaliplatin, is nonetheless associated with an excellent initial tumour response and its use has allowed numerous patients to go through surgery while their tumour was initially considered unresectable. These discrepancies between initial tumour response and very low long-term survival are the consequences of rapidly acquired chemoresistance and represent a major therapeutic frontier. To our knowledge, a model of resistance to the combined three drugs has never been described due to the difficulty of modelling the FOLFIRINOX protocol both in vitro and in vivo. Patient-derived tumour organoids (PDO) are the missing link that has long been lacking in the wide range of epithelial cancer models between 2D adherent cultures and in vivo xenografts. In this work we sought to set up a model of PDO with resistance to FOLFIRINOX regimen that we could compare to the paired naive PDO. RESULTS: We first extrapolated physiological concentrations of the three drugs using previous pharmacodynamics studies and bi-compartmental elimination models of oxaliplatin and SN-38. We then treated PaTa-1818x naive PDAC organoids with six cycles of 72 h-FOLFIRINOX treatment followed by 96 h interruption. Thereafter, we systematically compared treated organoids to PaTa-1818x naive organoids in terms of growth, proliferation, viability and expression of genes involved in cancer stemness and aggressiveness. CONCLUSIONS: We reproductively obtained resistant organoids FoxR that significantly showed less sensitivity to FOLFORINOX treatment than the PaTa-1818x naive organoids from which they were derived. Our resistant model is representative of the sequential steps of chemoresistance observed in patients in terms of growth arrest (proliferation blockade), residual disease (cell quiescence/dormancy) and relapse. SIGNIFICANCE: To our knowledge, this is the first genuine in vitro model of resistance to the three drugs in combined therapy. This new PDO model will be a great asset for the discovery of acquired chemoresistance mechanisms, knowledge that is mandatory before offering new therapeutic strategies for pancreatic cancer.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Humanos , Irinotecano/uso terapêutico , Leucovorina , Organoides , Oxaliplatina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico
5.
BMC Cancer ; 22(1): 537, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549674

RESUMO

BACKGROUND: Perioperative chemotherapy and surgery are a standard of care for patients with resectable gastric or gastroesophageal junction (GEJ) adenocarcinoma. However, the prognosis remains poor for this population. The FLOT (fluorouracil, leucovorin, oxaliplatin, and docetaxel) regimen is considered as the new standard chemotherapy regimen for perioperative strategy, despite associated with a 5-year overall survival rate (OS) amounting 45% following radical surgery. Immunotherapy with antibodies that inhibit PD-1/ PD-L1 interaction has recently emerged as a new treatment option with promising and encouraging early trial results for patients with advanced or metastatic gastric or GEJ adenocarcinoma. Currently, no trials have investigated the impact of perioperative immunotherapy in combination with chemotherapy for resectable gastric or GEJ adenocarcinoma. METHODS: GASPAR trial is a multicenter open-label, nonrandomized, phase II trial to evaluate the efficacy and safety of Spartalizumab in combination with the FLOT regimen as perioperative treatment for resectable gastric or GEJ adenocarcinoma. The main endpoint is the proportion of patients with pathological complete regression (pCR) in the primary tumour after preoperative treatment. Systemic treatment will include a pre-operative neoadjuvant and a post-operative adjuvant treatment, during which FLOT regimen will be administered every two weeks for 4 cycles and Spartalizumab every four weeks for 2 cycles. For patients with confirmed tumor resectability on imaging assessment, surgery will be realized within 4-6 weeks after the last dose of preoperative chemotherapy. Post-operative systemic treatment will then be initiated within 4-10 weeks after surgery. Using a Simon's two-stage design, up to 67 patients will be enrolled, including 23 in the first stage. DISCUSSION: Currently, no trials have investigated the impact of immunotherapy in combination with FLOT chemotherapy as perioperative treatment for resectable gastric or GEJ adenocarcinoma. Some studies have suggested a change in the tumor immune micro-environment following neoadjuvant chemotherapy in this setting, reinforcing the relevance to propose a phase II trial evaluating efficacy and safety of Spartalizumab in combination with perioperative chemotherapy, with the aim of improving treatment efficacy and survival outcomes. TRIAL REGISTRATION: NCT04736485, registered February, 3, 2021.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Neoplasias Gástricas , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/cirurgia , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Docetaxel , Neoplasias Esofágicas/patologia , Junção Esofagogástrica/patologia , Fluoruracila/uso terapêutico , Humanos , Leucovorina/uso terapêutico , Terapia Neoadjuvante/métodos , Oxaliplatina , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia , Microambiente Tumoral
6.
Gynecol Oncol ; 165(1): 30-39, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35123771

RESUMO

BACKGROUND: There are limited treatment options for ovarian cancer patients with early relapse after platinum chemotherapy. In preclinical studies, we previously demonstrated the promising activity of ABT-737, a Bcl-2/Bcl-xL anti-apoptotic protein inhibitor, in chemo-resistant ovarian cancer cells and tumors, suggesting its potential activity in platinum-resistant patients. METHODS: We conducted a prospective multicenter single-arm phase II study to assess the efficacy of Navitoclax (orally available ABT-737 analogue) monotherapy in 46 heavily pretreated (2-12 lines, median = 4) patients with high-grade serous platinum-resistant ovarian tumors. Navitoclax was administered at the daily dose of 150 mg during a lead-in period (7-14 days) and then increased to 250 mg daily in the absence of dose-limiting thrombocytopenia (

Assuntos
Neoplasias Ovarianas , Trombocitopenia , Compostos de Anilina , Carcinoma Epitelial do Ovário/tratamento farmacológico , Feminino , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/uso terapêutico , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/patologia , Platina/uso terapêutico , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-bcl-2 , Sulfonamidas
7.
Br J Cancer ; 125(1): 7-14, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33767416

RESUMO

Within the past few years, poly (ADP-ribose) polymerase inhibitors (PARPi) have been added to the standard of care for cancer patients, mainly for those exhibiting specific genomic alterations in the homologous recombination (HR) pathway. Until now, patients who are eligible to receive PARPi have been identified using next-generation sequencing (NGS) of gene panels. However, NGS analyses do have some limitations, with a subset of patients with negative NGS-based results can exhibit a clinical benefit, responding positively to PARPi, despite the failure to detect dynamic and predictive biomarkers such as mutated BRCA1/2 genes. Furthermore, the sequencing of initial tumour does not allow to detect reversions or secondary mutations that can restore proficient HR and lead to PARPi resistance. Therefore, it is crucial to better identify patients who are likely to benefit from PARPi treatment. In this context, tumour models such as patient-derived xenografts or tumour-derived organoids could help to guide clinicians in their decision making as these models accurately mimic phenotypic and genetic tumour heterogeneity, and could reflect treatment response in an integrative manner. In this Perspective article, we provide an overview of the currently available NGS-based tests that enable the identification of patients who might benefit from PARPi, and outline breakthroughs and discoveries to expand this selection using 3D functional assays. Combining NGS with functional assays could facilitate the efficient identification of patients, thereby improving patient survival.


Assuntos
Neoplasias/patologia , Organoides/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Análise de Sequência de DNA/métodos , Animais , Tomada de Decisão Clínica , Sequenciamento de Nucleotídeos em Larga Escala , Recombinação Homóloga , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Seleção de Pacientes , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Org Biomol Chem ; 19(41): 8968-8987, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34596646

RESUMO

In the area of cancer research, the development of new and potent inhibitors of anti-apoptotic proteins is a very active and promising topic. The small molecule MIM1 has been reported earlier as one of the first selective inhibitors of the anti-apoptotic protein Mcl-1. In the present paper, we first revised the structure of this molecule based on extensive physicochemical analyses. Then we designed and synthesized a focused library of analogues for the corrected structure of MIM1. Next, these molecules were subjected to a panel of in cellulo biological studies, allowing the identification of dual Bcl-xL/Mcl-1 inhibitors, as well as selective Mcl-1 inhibitors. These results have been complemented by fluorescence polarization assays with the Mcl-1 protein. Preliminary structure-activity relationships were discussed and extensive molecular modelling studies allowed us to propose a rationale for the biological activity of this series of new inhibitors, in particular for the selectivity of inhibition of Mcl-1 versus Bcl-xL.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides
9.
Exp Mol Med ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945959

RESUMO

Over the past decade, the emergence of patient-derived tumor organoids (PDTOs) has broadened the repertoire of preclinical models and progressively revolutionized three-dimensional cell culture in oncology. PDTO can be grown from patient tumor samples with high efficiency and faithfully recapitulates the histological and molecular characteristics of the original tumor. Therefore, PDTOs can serve as invaluable tools in oncology research, and their translation to clinical practice is exciting for the future of precision medicine in oncology. In this review, we provide an overview of methods for establishing PDTOs and their various applications in cancer research, starting with basic research and ending with the identification of new targets and preclinical validation of new anticancer compounds and precision medicine. Finally, we highlight the challenges associated with the clinical implementation of PDTO, such as its representativeness, success rate, assay speed, and lack of a tumor microenvironment. Technological developments and autologous cocultures of PDTOs and stromal cells are currently ongoing to meet these challenges and optimally exploit the full potential of these models. The use of PDTOs as standard tools in clinical oncology could lead to a new era of precision oncology in the coming decade.

10.
J Exp Clin Cancer Res ; 42(1): 173, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464436

RESUMO

Cancer is the main cause of death worldwide and metastasis is a major cause of poor prognosis and cancer-associated mortality. Metastatic conversion of cancer cells is a multiplex process, including EMT through cytoskeleton remodeling and interaction with TME. Tens of thousands of putative lncRNAs have been identified, but the biological functions of most are still to be identified. However, lncRNAs have already emerged as key regulators of gene expression at transcriptional and post-transcriptional level to control gene expression in a spatio-temporal fashion. LncRNA-dependent mechanisms can control cell fates during development and their perturbed expression is associated with the onset and progression of many diseases including cancer. LncRNAs have been involved in each step of cancer cells metastasis through different modes of action. The investigation of lncRNAs different roles in cancer metastasis could possibly lead to the identification of new biomarkers and innovative cancer therapeutic options.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/patologia , Citoesqueleto/metabolismo , Biomarcadores , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica/patologia
11.
J Exp Clin Cancer Res ; 42(1): 260, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37803448

RESUMO

BACKGROUND: In the era of personalized medicine, the establishment of preclinical models of cancer that faithfully recapitulate original tumors is essential to potentially guide clinical decisions. METHODS: We established 7 models [4 cell lines, 2 Patient-Derived Tumor Organoids (PDTO) and 1 Patient-Derived Xenograft (PDX)], all derived from the same Ovarian Clear Cell Carcinoma (OCCC). To determine the relevance of each of these models, comprehensive characterization was performed based on morphological, histological, and transcriptomic analyses as well as on the evaluation of their response to the treatments received by the patient. These results were compared to the clinical data. RESULTS: Only the PDX and PDTO models derived from the patient tumor were able to recapitulate the patient tumor heterogeneity. The patient was refractory to carboplatin, doxorubicin and gemcitabine, while tumor cell lines were sensitive to these treatments. In contrast, PDX and PDTO models displayed resistance to the 3 drugs. The transcriptomic analysis was consistent with these results since the models recapitulating faithfully the clinical response grouped together away from the other classical 2D cell culture models. We next investigated the potential of drugs that have not been used in the patient clinical management and we identified the HDAC inhibitor belinostat as a potential effective treatment based on PDTO response. CONCLUSIONS: PDX and PDTO appear to be the most relevant models, but only PDTO seem to present all the necessary prerequisites for predictive purposes and could constitute relevant tools for therapeutic decision support in the context of these particularly aggressive cancers refractory to conventional treatments.


Assuntos
Carcinoma , Organoides , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Resultado do Tratamento
12.
Med Sci (Paris) ; 38(11): 880-887, 2022 Nov.
Artigo em Francês | MEDLINE | ID: mdl-36448893

RESUMO

The recent emergence of tumor organoid cultures, or tumoroids, has enriched the repertoire of preclinical models in oncology. These microtumors are obtained in vitro by including cells from patient tumor samples in an extracellular matrix and cultured in specific media. Very close to the tumor of origin, tumoroids can be amplified fairly rapidly from a small quantity of tissue, established with high success rate for most tumor types, easily genetically engineered, and stored in biobanks. Tumoroids thus offer numerous possibilities in terms of basic research, such as the study of carcinogenesis or mechanisms of chemoresistance, but also the identification of new targets and preclinical validation of new anti-cancer compounds or personalized medicine. Technological developments and enrichment of tumoroids with other cell types are currently ongoing to optimally exploit the full potential of these models.


Title: Les tumoroïdes, modèles précliniques en plein essor pour l'oncologie. Abstract: La récente émergence des cultures d'organoïdes tumoraux, ou tumoroïdes, a permis d'enrichir le répertoire des modèles précliniques en oncologie. Très proches de la tumeur dont elles dérivent, ces microtumeurs offrent de nombreuses possibilités en termes de recherche fondamentale, telles que l'étude de la carcinogenèse ou de la chimioré-sistance, de validation préclinique de nouvelles molécules à visée anticancéreuse, ou encore de personnalisation des traitements. Divers développements techniques et l'enrichissement des tumoroïdes par l'addition d'autres types cellulaires sont actuellement en cours pour améliorer la pertinence de ces modèles et exploiter de façon optimale leur remarquable potentiel.


Assuntos
Neoplasias , Organoides , Humanos , Oncologia , Neoplasias/terapia , Medicina de Precisão , Carcinogênese
13.
Med Sci (Paris) ; 38(11): 888-895, 2022 Nov.
Artigo em Francês | MEDLINE | ID: mdl-36448894

RESUMO

Review of literature shows that it is possible to establish tumor-derived organoids, or tumoroids, from almost any type of tumor, and that these "micro-tumors" could be used to develop functional assays allowing the prediction of the patient response to treatments and/or the identification of predictive molecular signatures associated with the development of these therapies. Although it is still essential to optimize culture conditions to promote and accelerate the establishment of tumoroids, or to recapitulate tumor microenvironment, many applications are now possible in the field of prediction of response to treatments and in guiding therapeutic decision-making. Using tumoroids as standard tools in clinical oncology could make precision oncology enter a new era in the coming decade. Numerous ongoing research and clinical trials conducted throughout the world aim to validate the interest of this approach.


Title: Les organoïdes dérivés de tumeurs (ou tumoroïdes), des outils de choix pour la médecine de précision en oncologie. Abstract: Il est désormais possible d'établir des tumoroïdes à partir de presque tout type de tumeur, notamment en vue de la mise en place de tests fonctionnels prédictifs et/ou de l'identification de signatures moléculaires prédictives. Bien que l'optimisation des conditions de culture ou la complexification du micro-environnement des tumoroïdes soit encore nécessaire, de nombreuses applications sont déjà envisageables dans le domaine de la prédiction de la réponse aux traitements et de l'orientation de la décision thérapeutique. Par l'introduction de leur utilisation en clinique, l'oncologie de précision pourrait bien entrer dans une nouvelle ère dans le courant de la décennie à venir.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Organoides , Neoplasias/genética , Neoplasias/terapia , Oncologia , Microambiente Tumoral
14.
Arterioscler Thromb Vasc Biol ; 30(12): 2544-52, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20847303

RESUMO

OBJECTIVE: To determine the role of Wnt antagonist Dickkopf (DKK) 1 in human endothelial colony-forming cells (ECFCs) in view of the emerging importance of Wnt pathways in vascular biology. METHODS AND RESULTS: Endothelial progenitor cells have been proposed to be crucial in tumor neovascularization. Recombinant DKK1 has been tested in ECFC angiogenic properties in vitro. DKK1 enhanced ECFC proliferation and the capacity of ECFCs to form pseudotubes in Matrigel. These effects have been attributed to enhancement of vascular endothelial growth factor receptor 2, SDF-1, and CXCR4. DKK1 gene silencing has been realized on ECFCs and mesenchymal stem cells, and we found that DKK1 silencing in the 2 cell types decreased their angiogenic potential. We then examined the possible role of DKK1 in tumor neovasculogenesis and found that blood vessels of breast cancer tissues expressed DKK1 far more strongly in human breast tumors than in normal breast tissues. By studying 62 human breast tumors, we found a significant positive correlation between DKK1 expression and von Willebrand factor. In vivo, DKK1 strongly enhanced the vascularization of Matrigel plugs and increased tumor size in a xenograft model of human breast carcinoma in nude mice. CONCLUSIONS: DKK1 enhances angiogenic properties of ECFCs in vitro and is required for ECFC and mesenchymal stem cell angiogenic phenotypes in vivo. DKK1 also increases tumoral angiogenesis. Thus, we demonstrated a major role of DKK1 in angiogenic processes.


Assuntos
Neoplasias da Mama/metabolismo , Células Endoteliais/metabolismo , Sangue Fetal/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Células-Tronco/metabolismo , Proteínas Wnt/antagonistas & inibidores , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Quimiocina CXCL12/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Neovascularização Patológica/genética , Fenótipo , Interferência de RNA , Receptores CXCR4/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Carga Tumoral , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Wnt/metabolismo , Fator de von Willebrand/metabolismo
15.
Mol Oncol ; 15(12): 3659-3678, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34160887

RESUMO

Ovarian cancer (OC) is the leading cause of death in patients with gynecologic cancers. Due to late diagnosis and resistance to chemotherapy, the 5-year survival rate in patients with OC is below 40%. We observed that UCA1, a lncRNA previously reported to play an oncogenic role in several malignancies, is overexpressed in the chemoresistant OC cell line OAW42-R compared to their chemotherapy-sensitive counterpart OAW42. Additionally, UCA1 overexpression was related to poor prognosis in two independent patient cohorts. Currently, the molecular mechanisms through which UCA1 acts in OC are poorly understood. We demonstrated that downregulation of the short isoform of UCA1 sensitized OC cells to cisplatin and that UCA1 acted as competing endogenous RNA to miR-27a-5p. Upon UCA1 downregulation, miR-27a-5p downregulated its direct target UBE2N leading to the upregulation of BIM, a proapoptotic protein of the Bcl2 family. The upregulation of BIM is the event responsible for the sensitization of OC cells to cisplatin. In order to model response to therapy in patients with OC, we used several patient-derived organoid cultures, a model faithfully mimicking patient's response to therapy. Inhibition of UBE2N sensitized patient-derived organoids to platinum salts. In conclusion, response to treatment in patients with OC is regulated by the UCA1/miR-27a-5p/UBE2N axis, where UBE2N inhibition could potentially represent a novel therapeutic strategy to counter chemoresistance in OC.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
16.
Drug Des Devel Ther ; 15: 5035-5059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34949914

RESUMO

INTRODUCTION: With the aim of repositioning commercially available drugs for the inhibition of the anti-apoptotic myeloid cell leukemia protein, Mcl-1, implied in various cancers, five molecules, highlighted from a published theoretical screening, were selected to experimentally validate their affinity toward Mcl-1. RESULTS: A detailed NMR study revealed that only two of the five tested drugs, Torsemide and Deferasirox, interacted with Mcl-1. NMR data analysis allowed the complete characterization of the binding mode of both drugs to Mcl-1, including the estimation of their affinity for Mcl-1. Biological assays evidenced that the biological activity of Torsemide was lower as compared to the Deferasirox, which was able to efficiently and selectively inhibit the anti-apoptotic activity of Mcl-1. Finally, docking and molecular dynamics led to a 3D model for the Deferasirox:Mcl-1 complex and revealed the positioning of the drug in the Mcl-1 P2/P3 pockets as well as almost all synthetic Mcl-1 inhibitors. Interestingly, contrary to known synthetic Mcl-1 inhibitors which interact through Arg263, Deferasirox, establishes a salt bridge with Lys234. CONCLUSION: Deferasirox could be a potential candidate for drug repositioning as Mcl-1 inhibitor.


Assuntos
Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Deferasirox/farmacologia , Reposicionamento de Medicamentos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Deferasirox/química , Lenalidomida/química , Lenalidomida/farmacologia , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Oxcarbazepina/química , Oxcarbazepina/farmacologia , Risperidona/química , Risperidona/farmacologia , Torasemida/química , Torasemida/farmacologia
17.
BMC Cancer ; 10: 106, 2010 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-20307308

RESUMO

BACKGROUND: Multicellular tumour sphere models have been shown to closely mimic phenotype characteristics of in vivo solid tumours, or to allow in vitro propagation of cancer stem cells (CSCs). CSCs are usually characterized by the expression of specific membrane markers using flow cytometry (FC) after enzymatic dissociation. Consequently, the spatial location of positive cells within spheres is not documented. Confocal microscopy is the best technique for the imaging of thick biological specimens after multi-labelling but suffers from poor antibody penetration. Thus, we describe here a new protocol for in situ confocal imaging of protein expression in intact spheroids. METHODS: Protein expression in whole spheroids (150 mum in diameter) from two human colon cancer cell lines, HT29 and CT320X6, has been investigated with confocal immunostaining, then compared with profiles obtained through paraffin immunohistochemistry (pIHC) and FC. Target antigens, relevant for colon cancer and with different expression patterns, have been studied. RESULTS: We first demonstrate that our procedure overcomes the well-known problem of antibody penetration in compact structures by performing immunostaining of EpCAM, a membrane protein expressed by all cells within our spheroids. EpCAM expression is detected in all cells, even the deepest ones. Likewise, antibody access is confirmed with CK20 and CD44 immunostaining. Confocal imaging shows that 100% of cells express beta-catenin, mainly present in the plasma membrane with also cytoplasmic and nuclear staining, in agreement with FC and pIHC data. pIHC and confocal imaging show similar CA 19-9 cytoplasmic and membranar expression profile in a cell subpopulation. CA 19-9+ cell count confirms confocal imaging as a highly sensitive method (75%, 62% and 51%, for FC, confocal imaging and pIHC, respectively). Finally, confocal imaging reveals that the weak expression of CD133, a putative colon CSC marker, is restricted to the luminal cell surface of colorectal cancer acini, with CD133+ cellular debris into glandular lumina. CONCLUSION: The present protocol enables in situ visualization of protein expression in compact three-dimensional models by whole mount confocal imaging, allowing the accurate localization and quantification of cells expressing specific markers. It should prove useful to study rare events like CSCs within tumour spheres.


Assuntos
Regulação Neoplásica da Expressão Gênica , Microscopia Confocal/métodos , Neoplasias/patologia , Células-Tronco Neoplásicas/citologia , Antígeno AC133 , Antígenos CD/biossíntese , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Glicoproteínas/biossíntese , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imuno-Histoquímica/métodos , Peptídeos
18.
Cell Death Dis ; 11(5): 380, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424251

RESUMO

Ovarian cancer represents the first cause of mortality from gynecologic malignancies due to frequent chemoresistance occurrence. Increasing the [BH3-only Bim, Puma, Noxa proapoptotic]/[Bcl-xL, Mcl-1 antiapoptotic] proteins ratio was proven to efficiently kill ovarian carcinoma cells and development of new molecules to imbalance Bcl-2 member equilibrium are strongly required. Drug repurposing constitutes an innovative approach to rapidly develop therapeutic strategies through exploitation of established drugs already approved for the treatment of noncancerous diseases. This strategy allowed a renewed interest for Naftopidil, an α1-adrenergic receptor antagonist commercialized in Japan for benign prostatic hyperplasia. Naftopidil was reported to decrease the incidence of prostate cancer and its derivative was described to increase BH3-only protein expression in some cancer models. Based on these arguments, we evaluated the effects of Naftopidil on ovarian carcinoma and showed that Naftopidil reduced cell growth and increased the expression of the BH3-only proteins Bim, Puma and Noxa. This effect was independent of α1-adrenergic receptors blocking and involved ATF4 or JNK pathway depending on cellular context. Finally, Naftopidil-induced BH3-only members sensitized our models to ABT-737 and Trametinib treatments, in vitro as well as ex vivo, in patient-derived organoid models.


Assuntos
Compostos de Bifenilo/farmacologia , Naftalenos/farmacologia , Nitrofenóis/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Piperazinas/farmacologia , Piridonas/farmacologia , Pirimidinonas/farmacologia , Sulfonamidas/farmacologia , Proteína bcl-X/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Feminino , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína bcl-X/metabolismo
19.
Mol Cancer Ther ; 19(7): 1506-1519, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32371581

RESUMO

Novel therapeutic strategies are urgently required for the clinical management of chemoresistant ovarian carcinoma, which is the most lethal of the gynecologic malignancies. miRNAs hold promise because they play a critical role in determining the cell phenotype by regulating several hundreds of targets, which could constitute vulnerabilities of cancer cells. A combination of gain-of-function miRNA screening and real-time continuous cell monitoring allows the identification of miRNAs with robust cytotoxic effects in chemoresistant ovarian cancer cells. Focusing on miR-3622b-5p, we show that it induces apoptosis in several ovarian cancer cell lines by both directly targeting Bcl-xL and EGFR-mediating BIM upregulation. miR-3622b-5p also sensitizes cells to cisplatin by inhibiting Bcl-xL in ovarian cancer cell lines escaping BIM induction. miR-3622b-5p also exerts antimigratory capacities by targeting both LIMK1 and NOTCH1. These wide-ranging antitumor properties of miR-3622b-5p in ovarian cancer cells are mimicked by the associations of pharmacologic inhibitors targeting these proteins. The combination of an EGFR inhibitor together with a BH3-mimetic molecule induced a large decrease in cell viability in a panel of ovarian cancer cell lines and several ovarian patient-derived tumor organoids, suggesting the value of pursuing such a combination therapy in ovarian carcinoma. Altogether, our work highlights the potential of phenotype-based miRNA screening approaches to identify lethal interactions which might lead to new drug combinations and clinically applicable strategies.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Cisplatino/farmacologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/administração & dosagem , MicroRNAs/genética , Neoplasias Ovarianas/terapia , Apoptose , Movimento Celular , Proliferação de Células , Terapia Combinada , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Células Tumorais Cultivadas
20.
Cancer Res ; 67(1): 398-407, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17210723

RESUMO

Obtaining representative human colon cancer cell lines from fresh tumors is technically difficult. Using 32 tumor fragments from patients with colon cancer, the present study shows that prior xenograft leads to more efficient cell line establishment compared with direct establishment from fresh tumors (P < 0.05). From 26 tumor specimens, we successfully established 20 tumor xenografts in nude mice (77%); among 19 of these xenografts, 9 (47%) led to cell lines, including four from liver metastases. Only 3 of 31 tumor specimens (9.7%) grew immediately in vitro, and all were derived from primary tumors. To compare major phenotypic and genotypic characteristics of human colon cancer cell lines derived from the same tumor fragment using two protocols, the two pairs of cell lines obtained from 2 of 32 tumor fragments were extensively studied. They displayed similar morphology and were able to form compact spheroids. Chemosensitivity to 5-fluorouracil, CPT11, and L-OHP differed between cell lines obtained from patient tumors and those derived from xenografts. Matched cell lines shared a common core of karyotype alterations and distinctive additional chromosomal aberrations. Expression levels of genes selected for their role in oncogenesis evaluated by real-time quantitative PCR were found to be statistically correlated whatever the in vitro culture model used. In conclusion, xenotransplantation in mice of tumor fragments before establishment of cell lines enables generation of more novel human cancer cell lines for investigation of colon cancer cell biology, opening up the opportunity of reproducing the diversity of this disease.


Assuntos
Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Animais , Processos de Crescimento Celular/fisiologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Humanos , Cariotipagem , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA