RESUMO
In this work, polyhydroxybutyrate (PHB) was maleic anhydride (MA)-grafted in the molten state, using dicumyl peroxide (DCP) as a reaction initiator. Tin(II) 2-ethylhexanoate (Sn(Oct)2) and styrene monomer (St.) were used to maximize the maleic anhydride grafting degree. When PHB was modified with MA/DCP and MA/DCP/Sn(Oct)2, viscosity was reduced, suggesting chain scission in relation to pure PHB. However, when the styrene monomer was added, the viscosity increased due to multiple grafts of MA and styrene into the PHB chain. In addition, the FTIR showed the formation of a new band at 1780 cm-1 and 704 cm-1, suggesting a multiphase copolymer PHB-g-(St-co-MA). The PHB (MA/DCP) system showed a grafting degree of 0.23%; however, the value increased to 0.39% with incorporating Sn(Oct)2. The highest grafting efficiency was for the PHB (MA/DCP/St.) system with a value of 0.91%, while the PHB (MA/DCP/St./Sn(Oct)2) hybrid mixture was reduced to 0.73%. The chemical modification process of PHB with maleic anhydride increased the thermal stability by about 20 °C compared with pure PHB. The incorporation of 0.5 phr of the Sn(Oct)2 catalyst increased the efficiency of the grafting degree in the PHB. However, the St./Sn(Oct)2 hybrid mixture caused a deleterious effect on the maleic anhydride grafting degree.
Assuntos
Anidridos Maleicos , Estireno , Polímeros , Fenômenos QuímicosRESUMO
Styrene-butadiene rubber (SBR) waste from the shoe industry was repurposed to produce polypropylene (PP)-based compounds, with the aim of evaluating their antistatic potential. Styrene-ethylene-propylene (SEP) was added as a compatibilizing agent, while carbon nanotubes (MWCNT) were incorporated as a conductive nanofiller. The polymer compounds were processed in an internal mixer, and injection molded. The properties evaluated included torque rheometry, melt flow index (MFI), impact strength, tensile strength, Shore D hardness, electrical conductivity, heat deflection temperature (HDT), and differential scanning calorimetry (DSC), along with scanning electron microscopy (SEM) for morphology analysis. The production of the PP/SBR/SEP (60/30/10 wt%) compound resulted in a ductile material, enhancing impact strength and elongation at break to 161.2% and 165.2%, respectively, compared to pure PP. The addition of SEP improved the compatibility of the PP/SBR system, leading to an increase in the torque curve and a reduction in the MFI. Furthermore, the SBR/SEP combination in PP accelerated the crystallization process and increased the degree of crystallinity, suggesting a nucleating effect. Carbon nanotubes, in concentrations ranging from 0.5 to 2 phr (parts per hundred resin), were added to the PP/SBR/SEP system. Only the PP/SBR/SEP/MWCNT compound with 2 phr of MWCNT was suitable for antistatic applications, exhibiting an electrical conductivity of 4.52 × 10-07 S/cm. This was due to the greater distribution of MWCNT in the PP matrix, as demonstrated by SEM. In addition, remains tough at room temperature, with a 166% increase in impact strength compared to PP. However, there was a reduction in elastic modulus, tensile strength, Shore D hardness, and HDT due to increased flexibility. SBR waste can be reintegrated into the production chain to produce antistatic polymeric compounds, obtaining a tough material at room temperature.
RESUMO
The development of polymeric biocomposites containing natural fibers has grown over the years due to the properties achieved and its eco-friendly nature. Thus, biocomposites involving a polymer from a renewable source (Biopolyethylene (BioPE)) and babassu fibers (BFs), compatibilized with polyethylene grafted with maleic anhydride (MA) and acrylic acid (AA) (PE-g-MA and PE-g-AA, respectively) were obtained using melt mixing and injection molded into tensile, impact, and HDT specimens. Babassu fiber was characterized with Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TGA), and scanning electron microscopy (SEM). The biocomposites were characterized using torque rheometry, TGA, tensile strength, impact strength, thermomechanical properties, Shore D hardness, and SEM. The data indicate that the torque during the processing of compatibilized biocomposites was higher than that of BioPE/BF biocomposites, which was taken as an indication of a possible reaction between the functional groups. Compatibilization led to a substantial improvement in the elastic modulus, tensile strength, HDT, and VST and a decrease in Shore D hardness. These results were justified with SEM micrographs, which showed babassu fibers better adhered to the surface of the biopolyethylene matrix, as well as an encapsulation of these fibers. The system investigated is environmentally sustainable, and the results are promising for the technology of polymeric composites.
RESUMO
The aim of the present work is to evaluate the effect of NaOH solution as a stress cracking agent on the thermal and tensile properties of PET and PET/ZnO composites. The solutions were applied during tensile testing and the effects were monitored by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and testing the actual mechanical properties. The rate of crystallization was increased when the samples were exposed to NaOH, as observed by both cold and melt crystallization; this is possibly due to the reduction in molar mass of the PET molecules caused by NaOH. During melting, the DSC peaks became more complex, which is probably due to the distinct macromolecular mass, as well as crystallites with different sizes and levels of perfection. According to TGA analyses, no drastic changes were observed on the thermal stability of PET due to the action of NaOH. The tensile properties were shown to decrease drastically upon exposure to NaOH, which is the main symptom of stress cracking, leading to increased fragility, as also observed in the scanning electron microscopy (SEM) images. The presence of ZnO improved PET crystallization and provided some protection against the harmful effects of NaOH.
RESUMO
Epoxy resin based on bisphenol A diglycidyl ether/anhydride methyl tetrahydrophthalic/2,4,6-tris(dimethylaminomethyl)phenol (DGEBA/MTHPA/DEH 35) was produced by magnetic stirring; chicken eggshell (ES) was added as cure improver. Thermal stability, cure parameters, mechanical properties, and fracture surface were investigated by thermogravimetry (TGA), differential scanning calorimetry (DSC), tensile experiments, and scanning electron microscopy (SEM). In general, the addition of ES slightly decreased the thermal stability, being T0.05 5% lower than that of the reference sample. The cure rate increased with the heating rates, while best results were obtained upon addition of neat membrane (M) from ES. Surprisingly, the mechanical properties were significantly improved with ES as well as with M, being the Young's modulus 18% higher, the tensile strength 50% higher, and the deformation 35% higher than those of epoxy resin. SEM images showed that the synthetic compounds presented a smooth fracture surface, while the compounds with ES and M had a rougher surface with multiplane fractures, suggesting a fracture with higher energy absorption. In conclusion, epoxy/ES composites with better performance were produced, and effective tools are provided to control and attain in the future even better properties with ecological features.