Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Hum Genet ; 111(1): 150-164, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181731

RESUMO

Treatments for neurodegenerative disorders remain rare, but recent FDA approvals, such as lecanemab and aducanumab for Alzheimer disease (MIM: 607822), highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use summary-data-based Mendelian randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer disease, 3 amyotrophic lateral sclerosis (MIM: 105400), 5 Lewy body dementia (MIM: 127750), 46 Parkinson disease (MIM: 605909), and 9 progressive supranuclear palsy (MIM: 601104) target genes passing multiple test corrections (pSMR_multi < 2.95 × 10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics, classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these, 69.8% are expressed in the disease-relevant cell type from single-nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development, and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as riluzole in Alzheimer disease. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Recursos Comunitários , Multiômica , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Análise da Randomização Mendeliana
2.
Genome Res ; 33(5): 729-740, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37127330

RESUMO

Understanding the genetic causes of trait variation is a primary goal of genetic research. One way that individuals can vary genetically is through variable pangenomic genes: genes that are only present in some individuals in a population. The presence or absence of entire genes could have large effects on trait variation. However, variable pangenomic genes can be missed in standard genotyping workflows, owing to reliance on aligning short-read sequencing to reference genomes. A popular method for studying the genetic basis of trait variation is linkage mapping, which identifies quantitative trait loci (QTLs), regions of the genome that harbor causative genetic variants. Large-scale linkage mapping in the budding yeast Saccharomyces cerevisiae has found thousands of QTLs affecting myriad yeast phenotypes. To enable the resolution of QTLs caused by variable pangenomic genes, we used long-read sequencing to generate highly complete de novo genome assemblies of 16 diverse yeast isolates. With these assemblies, we resolved QTLs for growth on maltose, sucrose, raffinose, and oxidative stress to specific genes that are absent from the reference genome but present in the broader yeast population at appreciable frequency. Copies of genes also duplicate onto chromosomes where they are absent in the reference genome, and we found that these copies generate additional QTLs whose resolution requires pangenome characterization. Our findings show the need for highly complete genome assemblies to identify the genetic basis of trait variation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Fenótipo , Proteínas de Saccharomyces cerevisiae/genética
3.
PLoS Genet ; 16(11): e1009110, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33216740

RESUMO

Organisms living in seasonally variable environments utilize cues such as light and temperature to induce plastic responses, enabling them to exploit favorable seasons and avoid unfavorable ones. Local adapation can result in variation in seasonal responses, but the genetic basis and evolutionary history of this variation remains elusive. Many insects, including Drosophila melanogaster, are able to undergo an arrest of reproductive development (diapause) in response to unfavorable conditions. In D. melanogaster, the ability to diapause is more common in high latitude populations, where flies endure harsher winters, and in the spring, reflecting differential survivorship of overwintering populations. Using a novel hybrid swarm-based genome wide association study, we examined the genetic basis and evolutionary history of ovarian diapause. We exposed outbred females to different temperatures and day lengths, characterized ovarian development for over 2800 flies, and reconstructed their complete, phased genomes. We found that diapause, scored at two different developmental cutoffs, has modest heritability, and we identified hundreds of SNPs associated with each of the two phenotypes. Alleles associated with one of the diapause phenotypes tend to be more common at higher latitudes, but these alleles do not show predictable seasonal variation. The collective signal of many small-effect, clinally varying SNPs can plausibly explain latitudinal variation in diapause seen in North America. Alleles associated with diapause are segregating in Zambia, suggesting that variation in diapause relies on ancestral polymorphisms, and both pro- and anti-diapause alleles have experienced selection in North America. Finally, we utilized outdoor mesocosms to track diapause under natural conditions. We found that hybrid swarms reared outdoors evolved increased propensity for diapause in late fall, whereas indoor control populations experienced no such change. Our results indicate that diapause is a complex, quantitative trait with different evolutionary patterns across time and space.


Assuntos
Aclimatação/genética , Evolução Biológica , Diapausa de Inseto/genética , Drosophila melanogaster/fisiologia , Transcriptoma/fisiologia , Alelos , Altitude , Animais , Clima , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto/genética , Estudo de Associação Genômica Ampla , Herança Multifatorial , América do Norte , Locos de Características Quantitativas , Estações do Ano , Análise Espaço-Temporal , Zâmbia
4.
Res Sq ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014237

RESUMO

Background: Single-cell RNA sequencing has opened a window into clarifying the complex underpinnings of disease, particularly in quantifying the relevance of tissue- and cell-type-specific gene expression. Methods: To identify the cell types and genes important to therapeutic target development across the neurodegenerative disease spectrum, we leveraged genome-wide association studies, recent single-cell sequencing data, and bulk expression studies in a diverse series of brain region tissues. Results: We were able to identify significant immune-related cell types in the brain across three major neurodegenerative diseases: Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. Subsequently, putative roles of 30 fine-mapped loci implicating seven genes in multiple neurodegenerative diseases and their pathogenesis were identified. Conclusions: We have helped refine the genetic regions and cell types effected across multiple neurodegenerative diseases, helping focus future translational research efforts.

5.
medRxiv ; 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37577689

RESUMO

Single cell RNA sequencing has opened a window into clarifying the complex underpinnings of disease, particularly in quantifying the relevance of tissue- and cell-type-specific gene expression. To identify the cell types and genes important to therapeutic target development across the neurodegenerative disease spectrum, we leveraged genome-wide association studies, recent single cell sequencing data, and bulk expression studies in a diverse series of brain region tissues. We were able to identify significant immune-related cell types in the brain across three major neurodegenerative diseases: Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Parkinson's Diseases. Subsequently, we identified the major role of 30 fine-mapped loci implicating seven genes in multiple neurodegenerative diseases and their pathogenesis.

6.
medRxiv ; 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37090611

RESUMO

Treatments for neurodegenerative disorders remain rare, although recent FDA approvals, such as Lecanemab and Aducanumab for Alzheimer's Disease, highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use Summary-data-based Mendelian Randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer's disease, 3 amyotrophic lateral sclerosis, 5 Lewy body dementia, 46 Parkinson's disease, and 9 Progressive supranuclear palsy target genes passing multiple test corrections (pSMR_multi < 2.95×10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics - classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these 69.8% are expressed in the disease relevant cell type from single nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as Riluzole in AD. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community [https://nih-card-ndd-smr-home-syboky.streamlit.app/].

7.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168437

RESUMO

Mass spectrometry (MS) is a technique widely employed for the identification and characterization of proteins, personalized medicine, systems biology and biomedical applications. By combining MS with different proteomics approaches such as immunopurification MS, immunopeptidomics, and total protein proteomics, researchers can gain insights into protein-protein interactions, immune responses, cellular processes, and disease mechanisms. The application of MS-based proteomics in these areas continues to advance our understanding of protein function, cellular signaling, and complex biological systems. Data analysis for mass spectrometry is a critical process that includes identifying and quantifying proteins and peptides and exploring biological functions for these proteins in downstream analysis. To address the complexities associated with MS data analysis, we developed ProtPipe to streamline and automate the processing and analysis of high-throughput proteomics and peptidomics datasets. The pipeline facilitates data quality control, sample filtering, and normalization, ensuring robust and reliable downstream analysis. ProtPipe provides downstream analysis including identifying differential abundance proteins and peptides, pathway enrichment analysis, protein-protein interaction analysis, and MHC1-peptide binding affinity. ProtPipe generates annotated tables and diagnostic visualizations from statistical postprocessing and computation of fold-changes across pairwise conditions, predefined in an experimental design. ProtPipe is well-documented open-source software and is available at https://github.com/NIH-CARD/ProtPipe , accompanied by a web interface.

8.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33677482

RESUMO

Genetic association studies seek to uncover the link between genotype and phenotype, and often utilize inbred reference panels as a replicable source of genetic variation. However, inbred reference panels can differ substantially from wild populations in their genotypic distribution, patterns of linkage-disequilibrium, and nucleotide diversity. As a result, associations discovered using inbred reference panels may not reflect the genetic basis of phenotypic variation in natural populations. To address this problem, we evaluated a mapping population design where dozens to hundreds of inbred lines are outbred for few generations, which we call the Hybrid Swarm. The Hybrid Swarm approach has likely remained underutilized relative to pre-sequenced inbred lines due to the costs of genome-wide genotyping. To reduce sequencing costs and make the Hybrid Swarm approach feasible, we developed a computational pipeline that reconstructs accurate whole genomes from ultra-low-coverage (0.05X) sequence data in Hybrid Swarm populations derived from ancestors with phased haplotypes. We evaluate reconstructions using genetic variation from the Drosophila Genetic Reference Panel as well as variation from neutral simulations. We compared the power and precision of Genome-Wide Association Studies using the Hybrid Swarm, inbred lines, recombinant inbred lines (RILs), and highly outbred populations across a range of allele frequencies, effect sizes, and genetic architectures. Our simulations show that these different mapping panels vary in their power and precision, largely depending on the architecture of the trait. The Hybrid Swam and RILs outperform inbred lines for quantitative traits, but not for monogenic ones. Taken together, our results demonstrate the feasibility of the Hybrid Swarm as a cost-effective method of fine-scale genetic mapping.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Genoma , Genótipo , Desequilíbrio de Ligação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA