RESUMO
The identity of the earliest inhabitants of Xinjiang, in the heart of Inner Asia, and the languages that they spoke have long been debated and remain contentious1. Here we present genomic data from 5 individuals dating to around 3000-2800 BC from the Dzungarian Basin and 13 individuals dating to around 2100-1700 BC from the Tarim Basin, representing the earliest yet discovered human remains from North and South Xinjiang, respectively. We find that the Early Bronze Age Dzungarian individuals exhibit a predominantly Afanasievo ancestry with an additional local contribution, and the Early-Middle Bronze Age Tarim individuals contain only a local ancestry. The Tarim individuals from the site of Xiaohe further exhibit strong evidence of milk proteins in their dental calculus, indicating a reliance on dairy pastoralism at the site since its founding. Our results do not support previous hypotheses for the origin of the Tarim mummies, who were argued to be Proto-Tocharian-speaking pastoralists descended from the Afanasievo1,2 or to have originated among the Bactria-Margiana Archaeological Complex3 or Inner Asian Mountain Corridor cultures4. Instead, although Tocharian may have been plausibly introduced to the Dzungarian Basin by Afanasievo migrants during the Early Bronze Age, we find that the earliest Tarim Basin cultures appear to have arisen from a genetically isolated local population that adopted neighbouring pastoralist and agriculturalist practices, which allowed them to settle and thrive along the shifting riverine oases of the Taklamakan Desert.
Assuntos
Arqueologia , Genoma Humano/genética , Genômica , Migração Humana/história , Múmias/história , Filogenia , Agricultura/história , Animais , Bovinos , China , Características Culturais , Cálculos Dentários/química , Clima Desértico , Dieta/história , Europa (Continente) , Feminino , Cabras , Pradaria , História Antiga , Humanos , Masculino , Proteínas do Leite/análise , Filogeografia , Análise de Componente Principal , Proteoma/análise , Proteômica , Ovinos , Sequenciamento Completo do GenomaRESUMO
The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.
Assuntos
Genoma Humano/genética , Genômica , Migração Humana/história , China , Produção Agrícola/história , Feminino , Haplótipos/genética , História Antiga , Humanos , Japão , Idioma/história , Masculino , Mongólia , Nepal , Oryza , Polimorfismo de Nucleotídeo Único/genética , Sibéria , TaiwanRESUMO
The expansion of anatomically modern humans (AMHs) from Africa around 65,000 to 45,000 y ago (ca. 65 to 45 ka) led to the establishment of present-day non-African populations. Some paleoanthropologists have argued that fossil discoveries from Huanglong, Zhiren, Luna, and Fuyan caves in southern China indicate one or more prior dispersals, perhaps as early as ca. 120 ka. We investigated the age of the human remains from three of these localities and two additional early AMH sites (Yangjiapo and Sanyou caves, Hubei) by combining ancient DNA (aDNA) analysis with a multimethod geological dating strategy. Although U-Th dating of capping flowstones suggested they lie within the range ca. 168 to 70 ka, analyses of aDNA and direct AMS 14C dating on human teeth from Fuyan and Yangjiapo caves showed they derive from the Holocene. OSL dating of sediments and AMS 14C analysis of mammal teeth and charcoal also demonstrated major discrepancies from the flowstone ages; the difference between them being an order of magnitude or more at most of these localities. Our work highlights the surprisingly complex depositional history recorded at these subtropical caves which involved one or more episodes of erosion and redeposition or intrusion as recently as the late Holocene. In light of our findings, the first appearance datum for AMHs in southern China should probably lie within the timeframe set by molecular data of ca. 50 to 45 ka.
Assuntos
Arqueologia , Cavernas/química , DNA Antigo/análise , Fósseis , Sedimentos Geológicos/análise , Migração Humana/história , Datação Radiométrica/métodos , China , História Antiga , HumanosRESUMO
The Datong Basin was an important arena for population movement and admixture between the Yellow River Valley and Eastern Steppe. In historical materials, the region was often the setting for a tug-of-war between Han farmers and non-Han nomads. The genetic makeup and population history of this Datong population has, however, remained uncertain. In this study, we analysed 289 mitogenomes from Datong individuals. Our primary findings were: (1) population summary statistics analysis revealed a high level of genetic diversity and strong signals of population expansion in the Datong population; (2) inter-population comparisons (PCA and Fst heatmap) exhibited a close clustering between the Datong population and Northern Han, especially northern frontier groups, such as the Inner Mongolia Han, Heilongjiang Han, Liaoning Han and Tianjin Han; (3) phylogeographic analysis of complete mitogenomes revealed the presence of different components in the maternal gene pools of Datong population-the northern East Asian component was dominant (66.44%), whereas the southern East Asians were the second largest component with 31.49%. We also observed a much reduced west Eurasian (2.07%) component; (4) direct comparisons with ancient groups showed closer relationship between Datong and Yellow River farmers than Eastern Steppe nomads. Despite, therefore, centuries of Eastern Steppe nomadic control over the Datong area, Yellow River farmers had a much more significant impact on the Datong population.
Assuntos
Genoma Mitocondrial , Humanos , Genoma Mitocondrial/genética , Rios , Filogeografia , Povo Asiático , China , Genética Populacional , DNA Mitocondrial/genéticaRESUMO
The Kyrgyz are a trans-border ethnic group, mainly living in Kyrgyzstan. Previous genetic investigations of Central Asian populations have repeatedly investigated the Central Asian Kyrgyz. However, from the standpoint of human evolution and genetic diversity, Northwest Chinese Kyrgyz is one of the more poorly studied populations. In this study, we analyzed the non-recombining portion of the Y-chromosome from 298 male Kyrgyz samples from Xinjiang Uygur Autonomous Region in northwestern China, using a high-resolution analysis of 108 biallelic markers and 17 or 24 STRs. First, via a Y-SNP-based PCA plot, Northwest Chinese Kyrgyz tended to cluster with other Kyrgyz population and are located in the West Asian and Central Asian group. Second, we found that the Northwest Chinese Kyrgyz display a high proportion of Y-lineage R1a1a1b2a2a-Z2125, related to Bronze Age Siberian, and followed by Y-lineage C2b1a3a1-F3796, related to Medieval Niru'un Mongols, such as Uissun tribe from Kazakhs. In these two dominant lineages, two unique recent descent clusters have been detected via NETWORK analysis, respectively, but they have nearly the same TMRCA ages (about 13th-14th centuries). This finding once again shows that the expansions of Mongol Empire had a striking effect on the Central Asian gene pool.
Assuntos
Cromossomos Humanos Y , Genética Populacional , Povo Asiático/genética , China , Cromossomos Humanos Y/genética , Etnicidade , Haplótipos , Humanos , MasculinoRESUMO
Short tandem repeats (STRs) are the preferred genetic markers in forensic DNA analysis, routinely measured by capillary electrophoresis (CE) method based on the fragment length features. While, the massive parallel sequencing (MPS) technology could simultaneously target a large number of intriguing forensic STRs, bypassing the intrinsic limitations of amplicon size separation and accessible fluorophores in CE, which is efficient and promising for enabling the identification of forensic biological evidence. Here, we developed a novel MPS-based Forensic Analysis System Multiplecues SetB Kit of 133-plex forensic STR markers (52 STRs and 81 Y-STRs) and one Y-InDel (M175) based on multiplex PCR and single-end 400 bp sequencing strategy. This panel was subjected to developmental validation studies according to the SWGDAM Validation Guidelines. Approximately 2185 MPS-based reactions using 6 human DNA standards and 8 male donors were conducted for substrate studies (filter paper, gauze, cotton swab, four different types of FTA cards, peripheral venous blood, saliva, and exfoliated cells), sensitivity studies (from 2 ng down to 0.0625 ng), mixture studies (two-person DNA mixtures), PCR inhibitor studies (seven commonly encountered PCR inhibitors), species specificity studies (11 non-human species), and repeatability studies. Results of concordance studies (413 Han males and 6 human DNA standards) generated by STRait Razor and in-house Python scripts indicated 99.98% concordance rate in STR calling relative to CE for STRs between 41,900 genotypes at 100 STR markers. Moreover, the limitations of present studies, the nomenclature rules and forensic MPS applications were also described. In conclusion, the validation studies based on ~ 2200 MPS-based and ~ 2500 CE-based DNA profiles demonstrated that the novel MPS-based panel meets forensic DNA quality assurance guidelines with robust, reliable, and reproducible performance on samples of various quantities and qualities, and the STR nomenclature rules should be further regulated to integrate the inconformity between MPS-based and CE-based methods.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Impressões Digitais de DNA , Genética Forense/métodos , Humanos , Masculino , Reação em Cadeia da Polimerase Multiplex , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
Due to the formation of the Qiongzhou Strait by climate change and marine transition, Hainan island was isolated from the mainland southern China during the Last Glacial Maximum. Hainan island, located at the southernmost part of China and separated from the Leizhou Peninsula by the Qiongzhou Strait, laid on one of the modern human northward migration routes from Southeast Asia to East Asia. The Hlai language-speaking Li minority, the second largest population after Han Chinese in Hainan island, is the direct descendants of the initial migrants in Hainan island and has unique ethnic properties and derived characteristics; however, the forensic-associated studies on Hainan Li population are still insufficient. Hence, 136 Hainan Li individuals were genotyped in this study using the MPS-based ForenSeq™ DNA Signature Prep Kit (DNA Primer Set A, DPMA) to characterize the forensic genetic polymorphism landscape, and DNA profiles were obtained from 152 different molecular genetic markers (27 autosomal STRs, 24 Y-STRs, 7 X-STRs, and 94 iiSNPs). A total of 419 distinct length variants and 586 repeat sequence sub-variants, with 31 novel alleles (at 17 loci), were identified across the 58 STR loci from the DNA profiles of Hainan Li population. We evaluated the forensic characteristics and efficiencies of DPMA, demonstrating that the STRs and iiSNPs in DPMA were highly polymorphic in Hainan Li population and could be employed in forensic applications. In addition, we set up three datasets, which included the genetic data of (i) iiSNPs (27 populations, 2640 individuals), (ii) Y-STRs (42 populations, 8281 individuals), and (iii) Y haplogroups (123 populations, 4837 individuals) along with the population ancestries and language families, to perform population genetic analyses separately from different perspectives. In conclusion, the phylogenetic analyses indicated that Hainan Li, with a southern East Asia origin and Tai-Kadai language-speaking language, is an isolated population relatively. But the genetic pool of Hainan Li influenced by the limited gene flows from other Tai-Kadai populations and Hainan populations. Furthermore, the establishment of isolated population models will be beneficial to clarify the exquisite population structures and develop specific genetic markers for subpopulations in forensic genetic fields.
Assuntos
Impressões Digitais de DNA/métodos , Frequência do Gene , Genética Populacional , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Povo Asiático/genética , China/etnologia , Conjuntos de Dados como Assunto , Feminino , Marcadores Genéticos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Filogenia , Análise de Sequência de DNARESUMO
OBJECTIVES: Subbranches of Y-chromosome haplogroup C2a-L1373 are founding paternal lineages in northern Asia and Native American populations. Our objective was to investigate C2a-L1373 differentiation in northern Asia and its implications for Native American origins. MATERIALS AND METHODS: Sequences of rare subbranches (n = 43) and ancient individuals (n = 37) of C2a-L1373 (including P39 and MPB373), were used to construct phylogenetic trees with age estimation by BEAST software. RESULTS: C2a-L1373 expanded rapidly approximately 17.7,000-14.3,000 years ago (kya) after the last glacial maximum (LGM), generating numerous sublineages which became founding paternal lineages of modern northern Asian and Native American populations (C2a-P39 and C2a-MPB373). The divergence pattern supports possible initiation of differentiation in low latitude regions of northern Asia and northward diffusion after the LGM. There is a substantial gap between the divergence times of C2a-MPB373 (approximately 22.4 or 17.7 kya) and C2a-P39 (approximately 14.3 kya), indicating two possible migration waves. DISCUSSION: We discussed the decreasing time interval of "Beringian standstill" (2.5 ky or smaller) and its reduced significance. We also discussed the multiple possibilities for the peopling of the Americas: the "Long-term Beringian standstill model," the "Short-term Beringian standstill model," and the "Multiple waves of migration model." Our results support the argument from ancient DNA analyses that the direct ancestor group of Native Americans is an admixture of "Ancient Northern Siberians" and Paleolithic communities from the Amur region, which appeared during the post-LGM era, rather than ancient populations in greater Beringia, or an adjacent region, before the LGM.
Assuntos
Indígena Americano ou Nativo do Alasca , Povo Asiático , Cromossomos Humanos Y/genética , Migração Humana/história , Antropologia Física , Ásia Setentrional , Povo Asiático/classificação , Povo Asiático/genética , Povo Asiático/história , História Antiga , Humanos , Masculino , América do Norte , Filogenia , Indígena Americano ou Nativo do Alasca/classificação , Indígena Americano ou Nativo do Alasca/genética , Indígena Americano ou Nativo do Alasca/históriaRESUMO
Predicting the biogeographical ancestries of populations and unknown individuals based on ancestry-informative markers (AIMs) has been widely applied in providing DNA clues to criminal investigations, correcting the factor of population stratification in genome-wide association studies (GWAS), and working as the basis of predicting the externally visible characteristics (EVCs) of individuals. The present study chose Chinese Xinjiang Kazak (XJK) group as research object using a 165 AIM-SNPs panel via next generation sequencing (NGS) technology to reveal its ancestral information and genetic background by referencing the populations' data from 1000 Genomes Phase 3. After the Bonferroni correction, there were no significant deviations at the 165 AIM-SNP loci except two loci with homozygote in the studied XJK group. Ancestry information inference and populations genetic analyses were conducted basing on multiplex statistical methods such as forensic statistical parameter analyses, estimation of the success ratios with cross-validation, population tree, principal component analysis (PCA), and genetic structure analysis. The present results revealed that XJK group had the admixed ancestral components of East Asian and European populations with the ratio of about 62:37.
Assuntos
Povo Asiático , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Povo Asiático/etnologia , Povo Asiático/genética , China/etnologia , Humanos , População Branca/etnologia , População Branca/genéticaRESUMO
Aksay Kazakhs are the easternmost branch of Kazakhs, residing in Jiuquan city, the forefront of the ancient Silk Road. However, the genetic diversity of Aksay Kazakhs and its relationships with other Kazakhs still lack attention. To clarify this issue, we analyzed the non-recombining portion of the Y-chromosome from 93 Aksay Kazakhs samples, using a high-resolution analysis of 106 biallelic markers and 17 STRs. The lowest haplogroup diversity (0.38) was observed in Aksay Kazakhs among all studied Kazakh populations. The social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation. Aksay Kazakhs tended to migrate with clans and had limited paternal admixture with neighboring populations. Aksay Kazakhs had the highest frequency (80%) of haplogroup C2b1a3a1-F3796 (previous C3*-Star Cluster) among the investigated Eurasian steppe populations, which was now seen as the genetic marker of Kerei clan. Furthermore, NETWORK analysis indicated that Aksay Kazakhs originated from sub-clan Kerei-Abakh in Kazakhstan with DYS448 = 23. TMRCA estimates of three recent descent clusters detected in C2*-M217 (xM48) network, one of which incorporate nearly all of the C2b1a3a1-F3796 Aksay Kazakhs samples, gave the age range of 976-1405 YA for DC1, 1059-1314 YA for DC2, and 1139-1317 YA for DC3, respectively; this is coherent with the 7th to the 11th centuries Altaic-speaking pastoral nomadic population expansion.
Assuntos
Povo Asiático/genética , Cromossomos Humanos Y/genética , Etnicidade/genética , China , Marcadores Genéticos , Variação Genética , Genética Populacional , Haplótipos , Humanos , Masculino , Filogenia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
In this study, we designed a set of SARS-CoV-2 enrichment probes to increase the capacity for sequence-based virus detection and obtain the comprehensive genome sequence at the same time. This universal SARS-CoV-2 enrichment probe set contains 502 120 nt single-stranded DNA biotin-labeled probes designed based on all available SARS-CoV-2 viral sequences and it can be used to enrich for SARS-CoV-2 sequences without prior knowledge of type or subtype. Following the CDC health and safety guidelines, marked enrichment was demonstrated in a virus strain sample from cell culture, three nasopharyngeal swab samples (cycle threshold [Ct ] values: 32.36, 36.72, and 38.44) from patients diagnosed with COVID-19 (positive control) and four throat swab samples from patients without COVID-19 (negative controls), respectively. Moreover, based on these high-quality sequences, we discuss the heterozygosity and viral expression during coronavirus replication and its phylogenetic relationship with other selected high-quality samples from the Genome Variation Map. Therefore, this universal SARS-CoV-2 enrichment probe system can capture and enrich SARS-CoV-2 viral sequences selectively and effectively in different samples, especially clinical swab samples with a relatively low concentration of viral particles.
Assuntos
COVID-19/diagnóstico , Sondas de DNA/metabolismo , DNA de Cadeia Simples/genética , Genoma Viral , SARS-CoV-2/genética , Sequenciamento Completo do Genoma/métodos , Biotina/química , COVID-19/patologia , COVID-19/virologia , Sondas de DNA/síntese química , DNA de Cadeia Simples/metabolismo , Genótipo , Humanos , Mutação , Nasofaringe/virologia , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade , Sensibilidade e EspecificidadeRESUMO
The Fujian Tanka people are officially classified as a southern Han ethnic group, whereas they have customs similar to Daic and Austronesion people. Whether they originated in Han or Daic people, there is no consensus. Three hypotheses have been proposed to explain the origin of this group: (1) the Han Chinese origin, (2) the ancient Daic origin, (3) and the admixture between Daic and Han. This study addressed this issue by analyzing the paternal Y chromosome and maternal mtDNA variation of 62 Fujian Tanka and 25 neighboring Han in Fujian. The southern East Asian predominant haplogroups (e.g., Y-chromosome O1a1a-P203 and O1b1a1a-M95, and mtDNA F2a, M7c1, and F1a1) had relatively high frequencies in Tanka. The interpopulation comparison revealed that the Tanka have a closer affinity with Daic populations than with Han Chinese in paternal lineages but are closely clustered with southern Han populations such as Hakka and Chaoshanese in maternal lineages. Network and haplotype-sharing analyses also support the admixture hypothesis. The Fujian Tanka mainly originate from the ancient indigenous Daic people and have only limited gene flows from Han Chinese populations. Notably, the divergence time inferred by the Tanka-specific haplotypes indicates that the formation of Fujian Tanka was a least 1033.8-1050.6 years before present (the early Northern Song dynasty), indicating that they are an indigenous population, not late Daic migrants from southwestern China.
Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Genética Populacional/métodos , Povo Asiático/genética , China/etnologia , DNA Mitocondrial/história , Etnicidade/genética , Feminino , Testes Genéticos/métodos , Haplótipos/genética , História Antiga , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Background: Due to their long history, complex admixture processes and large population sizes, more research is required to explore the fine genetic structure of Han populations from different geographic locations of China.Aim: To characterise the paternal genetic structure of the Han Chinese in Henan province, which was once the central living region of the ancient Huaxia population, the precursors of the Han Chinese.Subjects and methods: We sequenced Y chromosomes of 60 males from Zhengzhou, Henan Province, and reconstructed a phylogenetic tree for these samples with age estimation.Results: We observed high diversity of paternal lineages in our collection. We found that the in situ Neolithic expansion of the "Major lineages" contributed to a large portion of the paternal gene pool of the Han population in Henan Province. We also detected a large number of "Minor lineages" that diverged in the Palaeolithic Age.Conclusion: We suggest that the high genetic diversity in the paternal gene pool of modern Han populations is mainly attributed to the reservation of a larger number of lineages that diverged in the Palaeolithic Age, while the recent expansion of limited lineages contributed to the majority of the gene pool of modern Han populations. We propose that such a structure is a basal characteristic for the genetic structure of modern Han populations.
Assuntos
Cromossomos Humanos Y/genética , Frequência do Gene , Variação Genética , Herança Paterna , China , Humanos , MasculinoRESUMO
The Y-chromosome haplogroup C2b1a3a2-F8951 is the paternal lineage of the Aisin Gioro clan, the most important brother branch of the famous Mongolic-speaking population characteristic haplogroup C2*-Star Cluster (C2b1a3a1-F3796). However, investigations on its internal phylogeny are still limited. In this study, we used whole Y-chromosome sequencing to update its phylogenetic tree. In the revised tree, C2b1a3a2-F8951 and C2*-Star Cluster differentiated 3852 years ago (95% CI = 3295-4497). Approximately 3558 years ago (95% CI = 3013-4144), C2b1a3a2-F8951 was divided into two main subclades, C2b1a3a2a-F14753 and C2b1a3a2b-F5483. Currently, samples of C2b1a3a2-F8951 were mainly from the House of Aisin Gioro clan, the Ao family from Daur and some individuals mainly from northeast China. Although other haplogroups are also found in the Ao family, including C2b1a2-M48, C2b1a3a1-F3796, C2a1b-F845, and N1c-M178, the haplogroup C2b1a3a2-F8951 is still the most distinct genetic component. For haplogroup C2b1a3a2-F8951, the time of the most recent common ancestor of the House of Aisin Gioro clan and the Ao family were both very late, just a few hundred years ago. Some family-specific Y-SNPs of the House of Aisin Gioro and the Ao family were also discovered. This revision evidently improved the resolving power of Y-chromosome phylogeny in northeast Asia, deepening our understanding of the origin of these two families, even the Mongolic-speaking population.
Assuntos
Cromossomos Humanos Y , Etnicidade/genética , Genética Populacional , Locos de Características Quantitativas , Alelos , Povo Asiático/genética , China , Ligação Genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , FilogeniaRESUMO
Genghis Khan's lineage has attracted both academic and general interest because of its mystery and large influence. However, the truth behind the mystery is complicated and continues to confound the scientific study. In this study, we surveyed the molecular genealogy of Northwestern China's Lu clan who claim to be the descendants of the sixth son of Genghis Khan, Toghan. We also investigated living members of the Huo and Tuo clans, who, according to oral tradition, were close male relatives of Lu clan. Using network analysis, we found that the Y-chromosomal haplotypes of Lu clan mainly belong to haplogroup C2b1a1b1-F1756, widely prevalent in Altaic-speaking populations, and are closely related to the Tore clan from Kazakhstan, who claim to be the descendants of the first son of Genghis Khan, Jochi. The most recent common ancestor of the special haplotype cluster that includes the Lu clan and Tore clan lived about 1000 years ago (YA), while the Huo and Tuo clans do not share any Y lineages with the Lu clan. In addition to the reported lineages, such as C3*-Star Cluster, R1b-M343, and Q, our results indicate that haplogroup C2b1a1b1-F1756 might be another candidate of the true Y lineage of Genghis Khan.
Assuntos
Povo Asiático/genética , Genealogia e Heráldica , Núcleo Familiar , Herança Paterna , China , Cromossomos Humanos Y , Loci Gênicos , Haplótipos , Humanos , Masculino , Filogenia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
OBJECTIVES: The Hui people are the adherents of Muslim faith and distributing throughout China. There are two contrasting hypotheses about the origin and diversification of the Hui people, namely, the demic diffusion involving the mass movement of people or simple cultural diffusion. MATERIALS AND METHODS: We collected 621 unrelated male individuals from 23 Hui populations all over China. We comprehensively genotyped more than 100 informative Y-chromosomal single nucleotide polymorphisms and 17 Y-chromosomal short tandem repeats (STRs) on those samples. RESULTS: Co-analyzed with published worldwide populations, our results suggest the origin of Hui people has involved massive assimilation of indigenous East Asians with about 70% in total of the paternal ancestry could be traced back to East Asia and the left 30% to various regions in West Eurasia. DISCUSSION: The genetic structure of the extant Hui populations was primarily shaped by the indigenous East Asian populations as they contribute the majority part of the paternal lineages of Hui people. The West Eurasian admixture was probably a sex-biased male-driven process since we have not found such a high proportion of West Eurasian gene flow on autosomal STRs and maternal mtDNA.
Assuntos
Povo Asiático/genética , Cromossomos Humanos Y/genética , Etnicidade/genética , Fluxo Gênico/genética , Islamismo , Antropologia Física , China , Genética Populacional , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Background: Previous studies have suggested that the human Y-chromosome haplogroup Q1a1a-M120, a widespread paternal lineage in East Asian populations, originated in South Siberia. However, much uncertainty remains regarding the origin, diversification, and expansion of this paternal lineage.Aim: To explore the origin and diffusion of paternal Q-M120 lineages in East Asia.Subjects and methods: The authors generated 26 new Y chromosome sequences of Q-M120 males and co-analysed 45 Y chromosome sequences of this haplogroup. A highly-revised phylogenetic tree of haplogroup Q-M120 with age estimates was reconstructed. Additionally, a comprehensive phylogeographic analysis of this lineage was performed including 15,007 samples from 440 populations in eastern Eurasia.Results: An ancient connection of this lineage with populations in Siberia was revealed. However, this paternal lineage experienced an in-situ expansion between 5000 and 3000 years ago in northwestern China. Ancient populations with high frequencies of Q-M120 were involved in the formation of ancient Huaxia populations before 2000 years ago; this haplogroup eventually became one of the founding paternal lineages of modern Han populations.Conclusion: This study provides a clear pattern of the origin and diffusion process of haplogroup Q1a1a-M120, as well as the role of this paternal lineage during the formation of ancient Huaxia populations and modern Han populations.
Assuntos
Cromossomos Humanos Y/genética , Haplótipos/genética , China , Etnicidade/genética , Migração Humana , Humanos , Masculino , Filogenia , Filogeografia , SibériaRESUMO
The human Y-chromosome has proven to be a powerful tool for tracing the paternal history of human populations and genealogical ancestors. The human Y-chromosome haplogroup Q is the most frequent haplogroup in the Americas. Previous studies have traced the origin of haplogroup Q to the region around Central Asia and Southern Siberia. Although the diversity of haplogroup Q in the Americas has been studied in detail, investigations on the diffusion of haplogroup Q in Eurasia and Africa are still limited. In this study, we collected 39 samples from China and Russia, investigated 432 samples from previous studies of haplogroup Q, and analyzed the single nucleotide polymorphism (SNP) subclades Q1a1a1-M120, Q1a2a1-L54, Q1a1b-M25, Q1a2-M346, Q1a2a1a2-L804, Q1a2b2-F1161, Q1b1a-M378, and Q1b1a1-L245. Through NETWORK and BATWING analyses, we found that the subclades of haplogroup Q continued to disperse from Central Asia and Southern Siberia during the past 10,000 years. Apart from its migration through the Beringia to the Americas, haplogroup Q also moved from Asia to the south and to the west during the Neolithic period, and subsequently to the whole of Eurasia and part of Africa.
Assuntos
Cromossomos Humanos Y/genética , Genética Populacional , Haplótipos/genética , Migração Humana , Ásia , China , Humanos , Repetições de Microssatélites/genética , Filogenia , Polimorfismo de Nucleotídeo Único , SibériaRESUMO
Diffusion of Tibeto-Burman populations across the Tibetan Plateau led to the largest human community in a high-altitude environment and has long been a focus of research on high-altitude adaptation, archeology, genetics, and linguistics. However, much uncertainty remains regarding the origin, diversification, and expansion of Tibeto-Burman populations. In this study, we analyzed a 7.0M bp region of 285 Y-chromosome sequences, including 81 newly reported ones, from male samples from Tibeto-Burman populations and other related Eastern Asian populations. We identified several paternal lineages specific to Tibeto-Burman populations, and most of these lineages emerged between 6000 and 2500 years ago. A phylogenetic tree and lineage dating both support the hypothesis that the establishment of Tibeto-Burman ancestral groups was triggered by Neolithic expansions from the middle Yellow River Basin and admixtures with local populations on the Tibetan Plateau who survived the Paleolithic Age. Furthermore, according to the geographical distributions of the haplogroups, we propose that there are two Neolithic expansion origins for all modern Tibeto-Burman populations. Our research provides a clear scenario about the sources, admixture process and later diffusion process of the ancestor population of all Tibeto-Burman populations.