Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7777, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237555

RESUMO

Hydrogels, provided that they integrate strength and toughness at desired high content of water, promise in load-bearing tissues such as articular cartilage, ligaments, tendons. Many developed strategies impart hydrogels with some mechanical properties akin to natural tissues, but compromise water content. Herein, a strategy deprotonation-complexation-reprotonation is proposed to prepare polyvinyl alcohol hydrogels with water content as high as ~80% and favorable mechanical properties, including tensile strength of 7.4 MPa, elongation of around 1350%, and fracture toughness of 12.4 kJ m-2. The key to water holding yet improved mechanical properties lies in controllable nucleation for refinement of crystalline morphology. With nearly constant water content, mechanical properties of as-prepared hydrogels are successfully tailored by tuning crystal nuclei density via deprotonation degree and their distribution uniformity via complexation temperature. This work provides a nucleation concept to design robust hydrogels with desired water content, holding implications for practical application in tissue engineering.

2.
ACS Appl Mater Interfaces ; 13(2): 3246-3258, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33406816

RESUMO

Uranium is an extremely abundant resource in seawater that could supply nuclear fuel for over the long-term, but it is tremendously difficult to extract. Here, a new supramolecular poly(amidoxime) (PAO)-loaded macroporous resin (PLMR) adsorbent has been explored for highly efficient uranium adsorption. Through simply immersing the macroporous resin in the PAO solution, PAOs can be firmly loaded on the surface of the nanopores mainly by hydrophobic interaction, to achieve the as-prepared PLMR. Unlike existing amidoxime-based adsorbents containing many inner minimally effective PAOs, almost all the PAOs of PLMR have high uranium adsorption efficiency because they can form a PAO-layer on the nanopores with molecular-level thickness and ultrahigh specific surface area. As a result, this PLMR has highly efficient uranium adsorbing performance. The uranium adsorption capacity of the PLMR was 157 mg/g (the UPAO in the PLMR was 1039 mg/g), in 32 ppm uranium-spiked seawater for 120 h. Additionally, uranium in 1.0 L 100 ppb U-spiked both water and seawater can be removed quickly and the recovery efficiency can reach 91.1 ± 1.7% and 86.5 ± 1.9%, respectively, after being filtered by a column filled with 200 mg PLMR at 300 mL/min for 24 h. More importantly, after filtering 200 T natural seawater with 200 g PLMR for only 10 days, the uranium-uptake amount of the PLMR reached 2.14 ± 0.21 mg/g, and its average uranium adsorption speed reached 0.214 mg/(g·day) which is very fast among reported amidoxime-based adsorbents. This new adsorbent has great potential to quickly and massively recover uranium from seawater and uranium-containing wastewater. Most importantly, this work will provide a simple but general strategy to greatly enhance the uranium adsorption efficiency of amidoxime-functionalized adsorbents with ultrahigh specific surface area via supramolecular interaction, and even inspire the exploration of other adsorbents.

3.
ACS Appl Mater Interfaces ; 13(18): 21272-21285, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33940792

RESUMO

Although eco-friendly amidoxime-based adsorbents own an excellent uranium (U)-adsorption capacity, their U-adsorption efficiency is commonly reduced and even damaged by the biological adhesion from bacteria/microorganisms in an aqueous environment. Herein, we present an antibiofouling ultrathin poly(amidoxime) membrane (AUPM) with highly enhanced U-adsorption performance, through dispersing the quaternized chitosan (Q-CS) and poly(amidoxime) in a cross-linked sulfonated cellulose nanocrystals (S-CNC) network. The cross-linked S-CNC not only can elevate the hydrophilicity to improve the U-adsorption efficiency of AUPM but also can enhance the mechanical strength to form a self-supporting ultrathin membrane (17.21 MPa, 10 µm thickness). More importantly, this AUPM owns a good antibiofouling property, owing to the broad-spectrum antibacterial quaternary ammonium groups of the Q-CS. As a result, within the 1.00 L of low-concentration (100 ppb) U-added pure water (pH ≈ 5) and seawater (pH ≈ 8) for 48 h, 30 mg of AUPM can recover 93.7% U and 91.4% U, respectively. Furthermore, compared with the U-absorption capacity of a blank membrane without the Q-CS, that of AUPM can significantly increase 37.4% reaching from 6.39 to 8.78 mg/g after being in natural seawater for only 25 d. Additionally, this AUPM can still maintain almost constant tensile strength during 10 cycles of adsorption-desorption, which indicates the relatively long-term usability of AUPM. This AUPM will be a promising candidate for highly efficient and large-scale U-recovery from both U-containing waste freshwater/seawater and natural seawater, which will be greatly helpful to deal with the U-pollution and enrich U for the consumption of nuclear power. More importantly, the work will provide a new convenient but universal strategy to fabricate new highly enhanced low-cost U-adsorbents, through the introduction of both an antibacterial property and a high mechanical performance, which will be a good reference for the design of new highly efficient U-adsorbents.


Assuntos
Incrustação Biológica/prevenção & controle , Membranas Artificiais , Oximas/química , Polímeros/química , Água do Mar/química , Urânio/isolamento & purificação , Águas Residuárias/química , Adsorção , Urânio/química
4.
Adv Sci (Weinh) ; 8(24): e2102250, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34708591

RESUMO

The extraction of uranium from seawater, which is an abundant resource, has attracted considerable attention as a viable form of energy-resource acquisition. The two critical factors for boosting the chemical thermodynamics of uranium extraction from seawater are the availability of sufficient amounts of uranyl ions for supply to adsorbents and increased interaction temperatures. However, current approaches only rely on the free diffusion of uranyl ions from seawater to the functional groups within adsorbents, which largely limits the uranium extraction capacity. Herein, inspired by the mechanism of plant transpiration, a plant-mimetic directional-channel poly(amidoxime) (DC-PAO) hydrogel is designed to enhance the uranium extraction efficiency via the active pumping of uranyl ions into the adsorbent. Compared with the original PAO hydrogel without plant-mimetic transpiration, the uranium extraction capacity of the DC-PAO hydrogel increases by 79.33% in natural seawater and affords the fastest reported uranium extraction average rate of 0.917 mg g-1 d-1 among the most state-of-the-art amidoxime group-based adsorbents, along with a high adsorption capacity of 6.42 mg g-1 within 7 d. The results indicate that the proposed method can enhance the efficiency of solar-transpiration-based uranium extraction from seawater, particularly in terms of reducing costs and saving processing time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA