Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nano Lett ; 24(3): 1001-1008, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38198561

RESUMO

We report a zero-dimensional (0D) lead-free chiral perovskite (S-/R-MBA)4Bi2I10 with a high degree of circularly polarized light (CPL) emission. Our 0D lead-free chiral perovskite exhibits an average degree of circular polarization (DOCP) of 19.8% at 78 K under linearly polarized laser excitation, and the maximum DOCP can reach 25.8%, which is 40 times higher than the highest DOCP of 0.5% in all reported lead-free chiral perovskites to the best of our knowledge. The high DOCP of (S-/R-MBA)4Bi2I10 is attributed to the free exciton emission with a Huang-Rhys factor of 2.8. In contrast, all the lead-free chiral perovskites in prior reports are dominant by self-trapped exciton in which the spin relaxation reduces DOCP dramatically. Moreover, we realize the manipulation of the valley degree of freedom of monolayer WSe2 by using the spin injection of the 0D chiral lead-free perovskites. Our results provide a new perspective to develop lead-free chiral perovskite devices for CPL light source, spintronics, and valleytronics.

2.
Nano Lett ; 23(14): 6581-6587, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37439779

RESUMO

Although selective singlet and triplet interlayer exciton (IX) emission of transition metal dichalcogenides (TMD) heterostructures can be achieved by applying an electric or magnetic field, the device structure is complex and a low temperature is usually required. Here, we demonstrate a simple all-optical approach to selectively enhance the emission of singlet and triplet IX by selectively coupling singlet or triplet IX of a WS2/WSe2 heterostructure to a SiO2 microsphere cavity. Angle-resolved photoluminescene reveals that the transition dipole of triplet IX is almost along the out-of-plane direction, while singlet IX only has 69% out-of-plane dipole moment contribution. Since the out-of-plane dipole presents a higher Purcell factor within the cavity, we can simultaneously enhance the emission intensity of IX and control the emissive IX species at room temperature in an all-optical route. Importantly, we demonstrate an all-optical valley polarization switch with a record high on/off ratio of 35.

3.
BMC Med Imaging ; 23(1): 159, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845636

RESUMO

BACKGROUND: There is a paucity of research investigating the application of machine learning techniques for distinguishing between lipid-poor adrenal adenoma (LPA) and subclinical pheochromocytoma (sPHEO) based on radiomic features extracted from non-contrast and dynamic contrast-enhanced computed tomography (CT) scans of the abdomen. METHODS: We conducted a retrospective analysis of multiphase spiral CT scans, including non-contrast, arterial, venous, and delayed phases, as well as thin- and thick-thickness images from 134 patients with surgically and pathologically confirmed. A total of 52 patients with LPA and 44 patients with sPHEO were randomly assigned to training/testing sets in a 7:3 ratio. Additionally, a validation set was comprised of 22 LPA cases and 16 sPHEO cases from two other hospitals. We used 3D Slicer and PyRadiomics to segment tumors and extract radiomic features, respectively. We then applied T-test and least absolute shrinkage and selection operator (LASSO) to select features. Six binary classifiers, including K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), support vector machine (SVM), and multi-layer perceptron (MLP), were employed to differentiate LPA from sPHEO. Receiver operating characteristic (ROC) curves and area under the curve (AUC) values were compared using DeLong's method. RESULTS: All six classifiers showed good diagnostic performance for each phase and slice thickness, as well as for the entire CT data, with AUC values ranging from 0.706 to 1. Non-contrast CT densities of LPA were significantly lower than those of sPHEO (P < 0.001). However, using the optimal threshold for non-contrast CT density, sensitivity was only 0.743, specificity 0.744, and AUC 0.828. Delayed phase CT density yielded a sensitivity of 0.971, specificity of 0.641, and AUC of 0.814. In radiomics, AUC values for the testing set using non-contrast CT images were: KNN 0.919, LR 0.979, DT 0.835, RF 0.967, SVM 0.979, and MLP 0.981. In the validation set, AUC values were: KNN 0.891, LR 0.974, DT 0.891, RF 0.964, SVM 0.949, and MLP 0.979. CONCLUSIONS: The machine learning model based on CT radiomics can accurately differentiate LPA from sPHEO, even using non-contrast CT data alone, making contrast-enhanced CT unnecessary for diagnosing LPA and sPHEO.


Assuntos
Adenoma , Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Humanos , Adenoma/diagnóstico por imagem , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem , Lipídeos , Aprendizado de Máquina , Feocromocitoma/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
4.
Nano Lett ; 18(3): 1686-1692, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29376381

RESUMO

Modulating second harmonic generation (SHG) by a static electric field through either electric-field-induced SHG or charge-induced SHG has been well documented. Nonetheless, it is essential to develop the ability to dynamically control and manipulate the nonlinear properties, preferably at high speed. Plasmonic hot carriers can be resonantly excited in metal nanoparticles and then injected into semiconductors within 10-100 fs, where they eventually decay on a comparable time scale. This allows one to rapidly manipulate all kinds of characteristics of semiconductors, including their nonlinear properties. Here we demonstrate that plasmonically generated hot electrons can be injected from plasmonic nanostructure into bilayer (2L) tungsten diselenide (WSe2), breaking the material inversion symmetry and thus inducing an SHG. With a set of pump-probe experiments we confirm that it is the dynamic separation electric field resulting from the hot carrier injection (rather than a simple optical field enhancement) that is the cause of SHG. Transient absorption measurement further substantiate the plasmonic hot electrons injection and allow us to measure a rise time of ∼120 fs and a fall time of 1.9 ps. Our study creates opportunity for the ultrafast all-optical control of SHG in an all-optical manner that may enable a variety of applications.

5.
Opt Express ; 22(3): 2989-95, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663590

RESUMO

By utilizing the phase change properties of vanadium dioxide (VO2), we have demonstrated the tuning of the electric and magnetic modes of split ring resonators (SRRs) simultaneously within the near IR range. The electric resonance wavelength is blue-shift about 73 nm while the magnetic resonance mode is red-shifted about 126 nm during the phase transition from insulating to metallic phases. Due to the hysteresis phenomenon of VO2 phase transition, both the electric and magnetic modes shifts are hysteretic. In addition to the frequency shift, the magnetic mode has a trend to vanish due to the fact that the metallic phase VO2 has the tendency to short the gap of SRR. We have also demonstrated the application of this active metamaterials in tunable surface-enhanced Raman scattering (SERS), for a fixed excitation laser wavelength, the Raman intensity can be altered significantly by tuning the electric mode frequency of SRR, which is accomplished by controlling the phase of VO2 with an accurate temperature control.

6.
ACS Omega ; 6(23): 15115-15125, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34151091

RESUMO

To deeply explore the spontaneous combustion disaster of coal caused by air leakage and oxygen supply, low-temperature coal oxidation experiments under different oxygen concentrations (DOC) were carried out. Within the coal spontaneous combustion characteristic measurement system, a synchronous thermal analyzer (STA) and a Fourier transform infrared spectrometer (FTIR), the macro laws of gas and heat generation under DOC are analyzed, and the mechanism of the development of coal spontaneous combustion restricted by the lean-oxygen environment is also revealed. The results show that the change of oxygen concentration (OC) does not affect the critical temperature value and gas index change trend, but the lean-oxygen environment reduces the gas concentration and heat production rate very obviously. According to the temperature of the intersection, OC needs to be lowered to less than 5% when preventing spontaneous combustion of coal. The chain thermal reaction lags in the lean-oxygen environment, and the pyrolysis activity is significantly reduced. Meanwhile, the temperature points at T 6 and T 7 show significant differences. Furthermore, with increasing OC and temperature, the content of the aliphatic hydrocarbon presents an overall trend of first increasing, then decreasing, and continuously increasing after stage IV. It is concluded that •OH, aliphatic hydrocarbons, aromatic hydrocarbons, and carboxyl groups are the key groups for the coal spontaneous combustion evolution under DOC. To combine the spontaneous combustion reaction of coal in the DOC environment, the reaction path of the index gas in the macroscopic phenomenon and the reason for the concentration differences are revealed, the mechanism for exotherm varies caused by OC is clarified, and the microscopic inhibition affection on the chain reaction within the lean-oxygen environment is also explored. The results put forward the key groups evolution mechanism under the DOC for coal oxidation, which could provide the technical guidance for the fire prevention and control on coal mines.

7.
Nanoscale ; 12(12): 6644-6650, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32186312

RESUMO

Strain engineering provides an efficient strategy to modulate the fundamental properties of semiconducting structures for use in functional electronic and optoelectronic devices. Here, we report on how the strain affects the bandgap, optical anisotropy and stability of two-dimensional (2D) perovskite (BA)2(MA)n-1PbnI3n+1 (n = 1-3) microplates, using photoluminescence spectroscopy. Upon applying external strain, the bandgap decreases at a rate of -5.60/-2.74/-1.38 meV per % for n = 1, 2, and 3 2D perovskites, respectively. This change of the bandgap can be ascribed to the distortion of the octahedra (Pb-I bond contraction) in 2D perovskites, supported by a study on emission anisotropy, which increases with the increase of strain. In addition, the external strain can significantly deteriorate the stability of 2D perovskites due to the strain induced distortion which would make the penetration of moisture and oxygen into the perovskite microplates easier, resulting in much faster degradation rates. Our findings not only provide insights into the design and optimization of functional devices, but also provide a new approach to improve the stability of 2D perovskite based devices.

8.
ACS Nano ; 13(2): 1213-1222, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30629429

RESUMO

Integrated nonlinear metasurfaces leading to high-efficiency optical second harmonic generation (SHG) are highly desirable for optical sensing, imaging, and quantum photonic systems. Compared to traditional metal-only metasurfaces, their hybrid counterparts, where a noncentrosymmetric nonlinear photonic material is incorporated in the near-field of a metasurface, can significantly boost SHG efficiency. However, it is difficult to integrate such devices on-chip due to material incompatibilities, thickness scaling challenges, and the narrow band gaps of nonlinear optical materials. Here, we demonstrate significantly enhanced SHG in on-chip integrated metasurfaces by using nanometer thin films of ferroelectric Y:HfO2. This material has the merit of CMOS compatibility, ultraviolet transparency up to 250 nm, and significant scalability down to sub-10 nm when deposited on silicon. We observe a 20-fold magnitude enhancement of the SHG intensity from the hybrid metasurface compared to a bare ferroelectric HfO2 thin film. Moreover, a 3-fold SHG enhancement is observed from the hybrid metasurface compared to a control structure using nonferroelectric HfO2, demonstrating a major contribution to the SHG signal from ferroelectric Y:HfO2. The effective second-order nonlinear optical coefficient χ(2) of Y:HfO2 is determined to be 6.0 ± 0.5 pm/V, which is comparable to other complex nonlinear photonic oxide materials. Our work provides a general pathway to build an efficient on-chip nanophotonic nonlinear light source for SHG using ferroelectric HfO2 thin films.

9.
Adv Mater ; 30(43): e1801931, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30144177

RESUMO

Black phosphorus (BP), as a fast emerging 2D material, shows promising potential in near-infrared (NIR) photodetection owing to its relatively small direct thickness-dependent bandgaps. However, the poor NIR absorption due to the atomically thin nature strongly hinders the practical application. In this study, it is demonstrated that surface functionalization of Ag nanoclusters on 2D BP can induce an abnormal NIR absorption at ≈746 nm, leading to ≈35 (138) times enhancement in 808 (730) nm NIR photoresponse for BP-based field-effect transistors. First-principles calculations reveal that localized bands are introduced into the bandgap of BP, serving as the midgap states, which create new transitions to the conduction band of BP and eventually lead to the abnormal absorption. This work provides a simple yet effective method to dramatically increase the NIR absorption of BP, which is crucial for developing high-performance NIR optoelectronic devices.

10.
ACS Sens ; 2(2): 235-242, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28723144

RESUMO

The shift of the localized surface plasmon resonance (LSPR) spectrum is widely used in bio- and chemical sensing. Traditionally, the shift is monitored at the peak maximum of the extinction spectrum. We demonstrate that the inflection point at the long wavelength side of the peak maximum shows better refractive index sensitivity than the peak maximum. A consistent improvement in bulk refractive index sensitivity of 18-55% is observed for six different nanoparticles such as spherical particles of different sizes, nanostar and nanorods with different aspect ratios. Local refractive index changes induced by molecular adsorption confirm the superior performance of the method. We contribute this improvement in sensitivity to the change in shape of the LSPR peak in response to an increase of the local refractive index. We further illustrate the advantage of using the inflection point method for analyzing DNA adsorption on U-shaped metamaterials, and for using 17 nm spherical gold nanoparticles for detection of matrix metalloprotease 7 (MMP-7), a biomarker that is heavily up-regulated during certain cancers. With the inflection point, the limit of detection (LOD) for MMP-7 is improved to 0.094 µg/mL from 0.22 µg/mL. This improvement may facilitate early diagnosis of salivary and colorectal cancers. We also envision that this generic method can be employed to track minute optical responses in other analytical areas.

11.
Nanoscale ; 9(35): 12843-12849, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28832043

RESUMO

Passive solar evaporation represents a promising and environmentally benign method of water purification/desalination. Plasmonic nanoparticles have been demonstrated as an effective approach for enhancing solar steam generation through a plasmonic heating effect, nonetheless the efficiency is constrained by unnecessary bulk heating of the entire liquid volume, while the noble metals commonly used are not cost-effective in terms of availability and their sophisticated preparation. Herein, a paper-like plasmonic device consisting of a microporous membrane and indium nanoparticles (In NPs/MPM) is fabricated through a simple thermal evaporation method. Due to the light-weight and porous nature of the device, the broadband light absorption properties, and theoretically the excellent plasmonic heating effect from In NP which could be even higher than gold, silver and aluminium nanoparticles, our device can effectively enhance solar water evaporation by floating on the water surface and its utility has been demonstrated in the solar desalination of a real seawater sample. The durability of the device in solar seawater desalination has also been investigated over multiple cycles with stable performances. This portable device could provide a solution for individuals to do water/seawater purification in under-developed areas with limited/no access to electricity or a centralized drinking water supply.

12.
ACS Nano ; 11(7): 7542-7551, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28586193

RESUMO

A universal approach to develop various two-dimensional ordered nanostructures, namely nanoparticle, nanonet and nanodome arrays with controllable periodicity, ranging from 100 nm to 1 µm, has been developed in centimeter-scale by nanosphere lithography technique. Hexagonally patterned vanadium dioxide (VO2) nanoparticle array with average diameter down to sub-100 nm as well as 160 nm of periodicity is fabricated, exhibiting distinct size-, media-, and temperature-dependent localized surface plasmon resonance switching behaviors, which fits well with the predication of simulations. We specifically explore their decent thermochromic performance in an energy saving smart window and develop a proof-of-concept demo which proves the effectiveness of patterned VO2 film to serve as a smart thermal radiation control. This versatile and facile approach to fabricate various ordered nanostructures integrated with attractive phase change characteristics of VO2 may inspire the study of temperature-dependent physical responses and the development of smart devices in extensive areas.

14.
ACS Nano ; 9(5): 5018-26, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25905978

RESUMO

Semiconductor nanostructures (e.g., nanowires and nanobelts) hold great promise as subwavelength coherent light sources, nonlinear optical frequency converters, and all-optical signal processors for optoelectronic applications. However, at such small scales, optical second-harmonic generation (SHG) is generally inefficient. Herein, we report on a straightforward strategy using a thin Au layer to enhance the SHG from a single CdS nanobelt by 3 orders of magnitude. Through detailed experimental and theoretical analysis, we validate that the augmented SHG originates from the mutual intensification of the local fields induced by the plasmonic nanocavity and by the reflections within the CdS Fabry-Pérot resonant cavity in this hybrid semiconductor-metal system. Polarization-dependent SHG measurements can be employed to determine and distinguish the contributions of SH signals from the CdS nanobelt and gold film, respectively. When the thickness of gold film becomes comparable to the skin depth, SHG from the gold film can be clearly observed. Our work demonstrates a facile approach for tuning the nonlinear optical properties of mesoscopic, nanostructured, and layered semiconductor materials.

15.
Nanoscale ; 6(1): 132-9, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24192898

RESUMO

Integration of metamaterials onto a flexible substrate can provide many advantages such as transparency, deformability, light weight and biocompatibility. Here we demonstrate a simple and convenient nickel sacrificial layer-assisted transfer method to fabricate visible-near infrared (IR) metamaterials embedded into a thin polydimethylsiloxane (PDMS) film. Both the structures and the optical properties are maintained after transferring into the PDMS film from a rigid substrate. This PDMS-based metamaterial can behave as a high performance surface enhanced Raman scattering (SERS) device with tunable plasmonic bands, which decouple the preparation of SERS structure and the linkage of targeted molecules to the plasmonic structures. By simply covering the PDMS metamaterials device on the surface with molecules of interest, we demonstrate the application of 2-naphthalenethiol molecules self-assembled on a Au film, highlighting the considerable potential of these PDMS metamaterials as a SERS stamp onto any other substrate. What's more, the PDMS-based nanostructures offer a representative model to investigate the interaction between the plasmonic nanostructure and the substrate consisting of different materials by placing PDMS on the surface of the substrate.

16.
ACS Nano ; 7(12): 11071-8, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24215162

RESUMO

Plasmonic Fano resonance, enabled by the weak interaction between a bright super-radiant and a subradiant resonance mode, not only is fundamentally interesting, but also exhibits potential applications ranging from extraordinary optical transmission to biosensing. Here, we demonstrate strong Fano resonances in split-ring resonators/disk (SRR/D) nanocavities. The high-order magnetic modes are observed in SRRs by polarization-resolved transmission spectroscopy. When a disk is centered within the SRRs, multiple high-order magnetic modes are coupled to a broad electric dipole mode of SRR/D, leading to significant Fano resonance spectral features in near-IR regime. The strength and line shape of the Fano resonances are tuned through varying the SRR split-angle and interparticle distance between SRR and disk. Finite-difference-time-domain (FDTD) simulations are conducted to understand the coupling mechanism, and the results show good agreement with experimental data. Furthermore, the coupled structure gives a sensitivity of ∼282 nm/RIU with a figure of merit ∼4.


Assuntos
Técnicas Biossensoriais/instrumentação , Nanopartículas/química , Análise Espectral Raman/métodos , Técnicas Biossensoriais/métodos , Simulação por Computador , Luz , Fenômenos Magnéticos , Magnetismo , Microscopia Eletrônica de Varredura , Óptica e Fotônica , Refratometria , Espectrofotometria , Ressonância de Plasmônio de Superfície
17.
ACS Nano ; 7(9): 7583-91, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23952283

RESUMO

Analysis of molecular interaction and conformational dynamics of biomolecules is of paramount importance in understanding their vital functions in complex biological systems, disease detection, and new drug development. Plasmonic biosensors based upon surface plasmon resonance and localized surface plasmon resonance have become the predominant workhorse for detecting accumulated biomass caused by molecular binding events. However, unlike surface-enhanced Raman spectroscopy (SERS), the plasmonic biosensors indeed are not suitable tools to interrogate vibrational signatures of conformational transitions required for biomolecules to interact. Here, we show that highly tunable plasmonic metamaterials can offer two transducing channels for parallel acquisition of optical transmission and sensitive SERS spectra at the biointerface, simultaneously probing the conformational states and binding affinity of biomolecules, e.g., G-quadruplexes, in different environments. We further demonstrate the use of the metamaterials for fingerprinting and detection of the arginine-glycine-glycine domain of nucleolin, a cancer biomarker that specifically binds to a G-quadruplex, with the picomolar sensitivity.


Assuntos
Técnicas Biossensoriais/instrumentação , Nanotecnologia/instrumentação , Mapeamento de Peptídeos/instrumentação , Fosfoproteínas/análise , Fosfoproteínas/ultraestrutura , Mapeamento de Interação de Proteínas/instrumentação , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/ultraestrutura , Análise Espectral Raman/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Imunoensaio/instrumentação , Conformação Proteica , Coloração e Rotulagem , Nucleolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA