RESUMO
This work investigates the effect of copper substitution on the magnetic properties of SmCo5 thin films synthesized by molecular beam epitaxy. A series of thin films with varying concentrations of Cu were grown under otherwise identical conditions to disentangle structural and compositional effects on the magnetic behavior. The combined experimental and theoretical studies show that Cu substitution at the Co3g sites not only stabilizes the formation of the SmCo5 structure but also enhances magnetic anisotropy and coercivity. Density functional theory calculations indicate that Sm(Co4Cu3g)5 possesses a higher single-ion anisotropy as compared to pure SmCo5. In addition, X-ray magnetic circular dichroism reveals that Cu substitution causes an increasing decoupling of the Sm 4f and Co 3d moments. Scanning transmission electron microscopy confirms predominantly SmCo5 phase formation and reveals nanoscale inhomogeneities in the Cu and Co distribution. Our study based on thin film model systems and advanced characterization as well as modeling reveals novel aspects of the complex interplay of intrinsic and extrinsic contributions to magnetic hysteresis in rare-earth-based magnets, i.e., the combination of increased intrinsic anisotropy due to Cu substitution and the extrinsic effect of inhomogeneous elemental distribution of Cu and Co.
RESUMO
The product properties of mixed oxide nanoparticles generated via spray-flame synthesis depend on an intricate interplay of solvent and precursor chemistries in the processed solution. The effect of two different sets of metal precursors, acetates and nitrates, dissolved in a mixture of ethanol (35 Vol.%) and 2-ethylhexanoic acid (2-EHA, 65 Vol.%) was investigated for the synthesis of LaFexCo1-xO3 (x = 0.2, 0.3) perovskites. Regardless of the set of precursors, similar particle-size distributions (dp = 8-11 nm) were obtained and a few particles with sizes above 20 nm were identified with transmission electron microscopy (TEM) measurements. Using acetates as precursors, inhomogeneous La, Fe, and Co elemental distributions were obtained for all particle sizes according to energy dispersive X-ray (EDX) mappings, connected to the formation of multiple secondary phases such as oxygen-deficient La3(FexCo1-x)3O8 brownmillerite or La4(FexCo1-x)3O10 Ruddlesden-Popper (RP) structures besides the main trigonal perovskite phase. For samples synthesized from nitrates, inhomogeneous elemental distributions were observed for large particles only where La and Fe enrichment occurred in combination with the formation of a secondary La2(FexCo1-x)O4 RP phase. Such variations can be attributed to reactions in the solution prior to injection in the flame as well as precursor-dependent variations in in-flame reactions. Therefore, the precursor solutions were analyzed by temperature-dependent attenuated total reflection Fourier-transform infrared (ATR-FTIR) measurements. The acetate-based precursor solutions indicated the partial conversion of, mainly La and Fe, acetates to metal 2-ethylhexanoates. In the nitrate-based solutions, esterification of ethanol and 2-EHA played the most important role. The synthesized nanoparticle samples were characterized by BET (Brunauer, Emmett, Teller), FTIR, Mössbauer, and X-ray photoelectron spectroscopy (XPS). All samples were tested as oxygen evolution reaction (OER) catalysts, and similar electrocatalytic activities were recorded when evaluating the potential required to reach 10 mA/cm2 current density (â¼1.61 V vs reversible hydrogen electrode (RHE)).
RESUMO
The interaction of 2-propanol with Co3O4(001) was studied by vibrational sum frequency spectroscopy and ab initio molecular dynamics simulations of 2-propanol dissolved in a water film to gain an insight, at the molecular level, into the pathways of catalytic oxidation. The experimental study has been performed under near ambient conditions, where the presence of water vapor is unavoidable, resulting in a water film on the sample and, thereby, allowing us to mimic the solution-water interface. Both experiment and theory conclude that 2-propanol adsorbs molecularly. The lack of dissociation is attributed to the adsorption geometry of 2-propanol in which the O-H bond does not point toward the surface. Furthermore, the copresent water not only competitively adsorbs on the surface but also inhibits 2-propanol deprotonation. The calculations reveal that the presence of water deactivates the lattice oxygen, thereby reducing the surface activity. This finding sheds light on the multifaceted role of water at the interface for the electrochemical oxidation of 2-propanol in aqueous solution as recently reported [Falk et al., ChemCatChem 13, 2942-2951 (2021)]. At higher temperatures, 2-propanol remains molecularly adsorbed on Co3O4(001) until it desorbs with increasing surface temperature.
RESUMO
The organometallic on-surface synthesis of the eight-membered sp2 carbon-based ring cyclooctatetraene (C8H8, Cot) with the neighboring rare-earth elements ytterbium and thulium yields fundamentally different products for the two lanthanides, when conducted on graphene (Gr) close to the charge neutrality point. Sandwich-molecular YbCot wires of more than 500 Å length being composed of an alternating sequence of Yb atoms and upright-standing Cot molecules result from the on-surface synthesis with Yb. In contrast, repulsively interacting TmCot dots consisting of a single Cot molecule and a single Tm atom result from the on-surface synthesis with Tm. While the YbCot wires are bound through van der Waals interactions to the substrate, the dots are chemisorbed to Gr via the Tm atoms being more electropositive compared to Yb atoms. When the electron chemical potential in Gr is substantially raised (n-doping) through backside doping from an intercalation layer, the reaction product in the synthesis with Tm can be tuned to TmCot sandwich-molecular wires rather than TmCot dots. By use of density functional theory, it is found that the reduced electronegativity of Gr upon n-doping weakens the binding as well as the charge transfer between the reaction intermediate TmCot dot and Gr. Thus, the assembly of the TmCot dots to long TmCot sandwich-molecular wires becomes energetically favorable. It is thereby demonstrated that the electron chemical potential in Gr can be used as a control parameter in an organometallic on-surface synthesis to tune the outcome of a reaction.
RESUMO
Bistable spin-crossover (SCO) complexes that undergo abrupt and hysteretic (ΔT1/2 ) spin-state switching are desirable for molecule-based switching and memory applications. In this study, we report on structural facets governing hysteretic SCO in a set of iron(II)-2,6-bis(1H-pyrazol-1-yl)pyridine) (bpp) complexes - [Fe(bpp-COOEt)2 ](X)2 â CH3 NO2 (X=ClO4 , 1; X=BF4 , 2). Stable spin-state switching - T1/2 =288â K; ΔT1/2 =62â K - is observed for 1, whereas 2 undergoes above-room-temperature lattice-solvent content-dependent SCO - T1/2 =331â K; ΔT1/2 =43â K. Variable-temperature single-crystal X-ray diffraction studies of the complexes revealed pronounced molecular reorganizations - from the Jahn-Teller-distorted HS state to the less distorted LS state - and conformation switching of the ethyl group of the COOEt substituent upon SCO. Consequently, we propose that the large structural reorganizations rendered SCO hysteretic in 1 and 2. Such insights shedding light on the molecular origin of thermal hysteresis might enable the design of technologically relevant molecule-based switching and memory elements.
RESUMO
The paper addresses coupling of magnetic nanoparticles (MNPs) with the polymer matrix of temperature-sensitive microgels and their response to magnetic fields. Therefore, CoFe2O4@CA (CA = citric acid) NPs are embedded within N-isopropylacrylamid (NIPAM) based microgels. The volume phase transition (VPT) of the magnetic microgels and the respective pure microgels is studied by dynamic light scattering and electrophoretic mobility measurements. The interaction between MNPs and microgel network is studied via magnetometry and AC-susceptometry using a superconducting quantum interference device (SQUID). The data show a significant change of the magnetic properties by crossing the VPT temperature (VPTT). The change is related to the increased confinement of the MNP due to the shrinking of the microgels. Modifying the microgel with hydrophobic allyl mercaptan (AM) affects the swelling ability and the magnetic response, i.e. the coupling of MNPs with the polymer matrix. Modeling the AC-susceptibility data results in an effective size distribution. This distribution represents the varying degree of constraint in MNP rotation and motion by the microgel network. These findings help to understand the interaction between MNPs and the microgel matrix to design multi responsive systems with tunable particle matrix coupling strength for future applications.
RESUMO
The Co-based complex [Co(H2 B(pz)(pypz))2 ] (py=pyridine, pz=pyrazole) deposited on Ag(111) was investigated with scanning tunneling microscopy at ≈5â K. Due to a bis(tridentate) coordination sphere the molecules aggregate mainly into tetramers. Individual complexes in these tetramers undergo reversible transitions between two states with characteristic image contrasts when current is passed through them or one of their neighbors. Two molecules exhibit this bistability while the other two molecules are stable. The transition rates vary linearly with the tunneling current and exhibit an intriguing dependence on the bias voltage and its polarity. We interpret the states as being due to S=1 /2 and 3 /2 spin states of the Co2+ complex. The image contrast and the orders-of-magnitude variations of the switching yields can be tentatively understood from the calculated orbital structures of the two spin states, thus providing first insights into the mechanism of electron-induced excited spin-state trapping (ELIESST).
RESUMO
Nuclear resonant reflectivity (NRR) from an Fe60Al40 film was measured using synchrotron radiation at several grazing angles near the critical angle of total external reflection. Using laterally resolved measurements after irradiation with 20â keV Ne+ ions of gradually varying fluence of 0-3.0â ×â 1014â ionsâ cm-2, the progressive creation of the ferromagnetic A2 phase with increasing ion fluence was confirmed. The observed depth selectivity of the method has been explained by application of the standing wave approach. From the time spectra of the nuclear resonant scattering in several reflection directions the depth profiles for different hyperfine fields were extracted. The results show that the highest magnetic hyperfine fields (â¼18-23â T) are initially created in the central part of the film and partially at the bottom interface with the SiO2 substrate. The evolution of the ferromagnetic onset, commencing at a fixed depth within the film and propagating towards the interfaces, has been directly observed. At higher fluence (3.0â ×â 1014â ionsâ cm-2) the depth distribution of the ferromagnetic fractions became more homogeneous across the film depth, in accordance with previous results.
RESUMO
Perovskites are interesting oxidation catalysts due to their chemical flexibility enabling the tuning of several properties. In this work, we synthesized LaFe1-x Cox O3 catalysts by co-precipitation and thermal decomposition, characterized them thoroughly and studied their 2-propanol oxidation activity under dry and wet conditions to bridge the knowledge gap between gas and liquid phase reactions. Transient tests showed a highly active, unstable low-temperature (LT) reaction channel in conversion profiles and a stable, less-active high-temperature (HT) channel. Cobalt incorporation had a positive effect on the activity. The effect of water was negative on the LT channel, whereas the HT channel activity was boosted for x>0.15. The boost may originate from a slower deactivation rate of the Co3+ sites under wet conditions and a higher amount of hydroxide species on the surface comparing wet to dry feeds. Water addition resulted in a slower deactivation for Co-rich catalysts and higher activity in the HT channel state.
RESUMO
By using the crystalline precursor decomposition approach and direct co-precipitation the composition and mesostructure of cobalt-based spinels can be controlled. A systematic substitution of cobalt with redox-active iron and redox-inactive magnesium and aluminum in a cobalt spinel with anisotropic particle morphology with a preferred 111 surface termination is presented, resulting in a substitution series including Co3 O4 , MgCo2 O4 , Co2 FeO4 , Co2 AlO4 and CoFe2 O4 . The role of redox pairs in the spinels is investigated in chemical water oxidation by using ceric ammonium nitrate (CAN test), electrochemical oxygen evolution reaction (OER) and H2 O2 decomposition. Studying the effect of dominant surface termination, isotropic Co3 O4 and CoFe2 O4 catalysts with more or less spherical particles are compared to their anisotropic analogues. For CAN-test and OER, Co3+ plays the major role for high activity. In H2 O2 decomposition, Co2+ reveals itself to be of major importance. Redox active cations in the structure enhance the catalytic activity in all reactions. A benefit of a predominant 111 surface termination depends on the cobalt oxidation state in the as-prepared catalysts and the investigated reaction.
RESUMO
The implementation of anisotropy to functional materials is a key step towards future smart materials. In this work, we evaluate the influence of preorientation and sample architecture on the strain-induced anisotropy in hybrid elastomers containing covalently attached elongated magnetic filler particles. Accordingly, silica coated spindle-type hematite nanoparticles are incorporated into poly(dimethylsiloxane)-based elastomers, and two types of composite architectures are compared: on the one hand a conventional architecture of filled, covalently crosslinked elastomers, and on the other hybrid elastomers that are crosslinked exclusively by covalent attachment of the polymer chains to the particle surface. By the application of external strain and with magnetic fields, the orientational order of the elongated nanoparticles can be manipulated, and we investigate the interplay between strain, magnetic order, and orientational order of the particles by combining 2D small angle X-ray scattering experiments under strain and fields with Mössbauer spectroscopy under similar conditions, and supplementary angular-dependent magnetization experiments. The converging information is used to quantify the order in these interesting materials, while establishing a direct link between the magnetic properties and the spatial orientation of the embedded magnetic nanoparticles.
RESUMO
During the last decade graphene-enhanced Raman spectroscopy has proven to be a powerful tool to detect and analyze minute amounts of molecules adsorbed on graphene. By using a graphene-based field-effect device the unique opportunity arises to gain a deeper insight into the coupling of molecules and graphene as graphene's Fermi level can be controlled by the transistor`s gate voltage. However, the fabrication of such a device comes with great challenges because of contaminations stemming from processing the device inevitably prevent direct adsorption of the molecules onto graphene rendering it unsuitable for field-effect controlled graphene-enhanced Raman spectroscopy measurements/experiments. In this work, we solve this problem by establishing two different fabrication procedures for such devices, both of which are in addition compatible with large area and scalable production requirements. As a first solution, selective argon cluster irradiation is shown to be an efficient way to remove resist residues after processing. We provide evidence that after the irradiation the enhancement of the molecular Raman signal can indeed be measured, demonstrating that this procedure cleans graphene's surface sufficiently enough for direct molecular adsorption. As a second solution, we have developed a novel stacking method to encapsulate the molecules in between two graphene layers to protect the underlying graphene and molecular layer from the harsh conditions during the photolithography process. This method combines the advantages of dry stacking, which leads to a perfectly clean interface, and wet stacking processes, which can easily be scaled up for large area processing. Both approaches yield working graphene transistors with strong molecular Raman signals stemming from cobalt octaehtylporphyrin, a promising and prototypical candidate for spintronic applications, and are therefore suitable for graphene based molecular sensing applications.
RESUMO
We report a combined experimental and theoretical study of pure and doped cobalt ferrite where 25% of Fe3+ ions were replaced by Al3+, Ga3+, and In3+ ions, respectively, i.e., CoFe1.5X0.5O4 (X = Al, Ga, and In). The ferrite compositions were successfully synthesized using the solid-state reaction method. The X-ray powder diffraction method established that all ferrite samples had a spinel unit cell structure with the Fd3[combining macron]m (No. 227) space group. The lattice constants of ferrites increased from 8.382 Å (for undoped CoFe2O4) to 8.520 Å (for In-doped cobalt ferrite) in direct relation to the dopant ion size. The magnetic properties were obtained at 4.3 K and 300 K. At 4.3 K, the In-doped CoFe2O4 showed the highest saturation magnetic moment of 4.68 µB f.u.-1, while Al-doped CoFe2O4 showed the smallest value of 2.72 µB f.u.-1. The Fe3+ distribution among the spinel tetrahedral and octahedral sites was determined from the Mössbauer spectra. From ultraviolet-visible diffuse reflectance spectroscopy the direct optical bandgaps were determined, which have values between 1.20 eV and 1.28 eV for these ferrites. The ferrite compositions were also studied theoretically using plane-wave density functional theory using the CASTEP code where it was revealed that arrangements of the non-magnetic cations at the tetrahedral and octahedral sites strongly influence the electronic structure, the bandgap value, and the net magnetic moment per formula unit. Light Al3+ ions at the octahedral site give a low value of the net magnetic moment while the heavier Ga3+ and In3+ ions at the tetrahedral sites of the spinel give an enhanced magnetic moment. The magnetic moment values obtained from theoretical calculations match very well with the experimental values. Moreover, the theoretical calculations reveal that there exists a strong p-d hybridization among the oxygen and magnetic ions, which is affected by the non-magnetic dopant ions. The change in hybridization with the non-magnetic ion doping is responsible for the altered magnetic moments of the doped ferrites. Thus, our study provides a comprehensive investigation covering the synthesis and characterization of ferrites along with a good understanding of the phenomenon of how non-magnetic ion doping into spinel ferrites provides a method to tune the electronic and magnetic properties of the spinel ferrite.
RESUMO
Liquid crystal (LC) based magnetic materials consisting of LC hosts doped with functional magnetic nanoparticles enable optical switching of the mesogens at moderate magnetic field strengths and thereby open the pathway for the design of novel smart devices. A promising route for the fabrication of stable ferronematic phases is the attachment of a covalently bound LC polymer shell onto the surface of nanoparticles. With this approach, ferronematic phases based on magnetically blocked particles and the commercial LC 4-cyano-4'-pentylbiphenyl (5CB) liquid crystal were shown to have a sufficient magnetic sensitivity, but the mechanism of the magneto-nematic coupling is unidentified. To get deeper insight into the coupling modes present in these systems, we prepared ferronematic materials based on superparamagnetic particles, which respond to external fields with internal magnetic realignment instead of mechanical rotation. This aims at clarifying whether the hard coupling of the magnetization to the particle's orientation (magnetic blocking) is a necessary component of the magnetization-nematic director coupling mechanism. We herein report the fabrication of a ferronematic phase consisting of surface-functionalized superparamagnetic Fe3O4 particles and 5CB. We characterize the phase behavior and investigate the magneto-optical properties of the new ferronematic phase and compare it to the ferronematic system containing magnetically blocked CoFe2O4 particles to get information about the origin of the magneto-nematic coupling.
RESUMO
In several upcoming rheological approaches, including methods of micro- and nanorheology, the measurement geometry is of critical impact on the interpretation of the results. The relative size of the probe objects employed (as compared to the intrinsic length scales of the sample to be investigated) becomes of crucial importance, and there is increasing interest to investigate the dynamic processes and mobility in nanostructured materials. A combination of different rheological approaches based on the rotation of magnetically blocked nanoprobes is used to systematically investigate the size-dependent diffusion behavior in aqueous poly(ethylene glycol) (PEG) solutions with special attention paid to the relation of probe size to characteristic length scales within the polymer solutions. We employ two types of probe particles: nickel rods of hydrodynamic length Lh between 200 nm and 650 nm, and cobalt ferrite spheres with diameter dh between 13 nm and 23 nm, and examine the influence of particle size and shape on the nanorheological information obtained in model polymer solutions based on two related, dynamic-magnetic approaches. The results confirm that as long as the investigated solutions are not entangled, and the particles are much larger than the macromolecular correlation length, a good accordance between macroscopic and nanoscopic results, whereas a strong size-dependent response is observed in cases where the particles are of similar size or smaller than the radius of gyration Rg or the correlation length ξ of the polymer solution.
RESUMO
Fe3O4/CoFe2O4 nanorods were obtained via a simple seed-mediated synthesis. Nanorods were used as seeds to grow CoFe2O4 by thermal codecomposition of the cobalt(II) and iron(III) acetylacetonate precursors. The growth process was monitored by electron microscopy (SEM, TEM), and the resulting nanorods were characterized by powder X-ray diffraction analysis and IR and Raman spectroscopy. Magnetometry and AC susceptometry studies revealed a distribution of Néel relaxation times with an average blocking temperature of 140 K and a high-field magnetization of 42 Am2/kg. Complementarily recorded 57Fe-Mössbauer spectra were consistent with the Fe3O4/CoFe2O4 spinel structure and exhibited considerable signs of spin frustration, which was correlated to the internal and surface structure of the nanorods.
RESUMO
Rheological approaches based on micro- or nanoscopic probe objects are of interest due to the low volume requirement, the option of spatially resolved probing, and the minimal-invasive nature often connected to such probes. For the study of microstructured systems or biological environments, such methods show potential for investigating the local, size-dependent diffusivity and particle-matrix interactions. For the latter, the relative length scale of the used probes compared to the size of the structural units of the matrix becomes relevant. In this study, a rotational-dynamic approach based on Magnetic Particle Nanorheology (MPN) is used to extract size- and frequency-dependent nanorheological properties by using an otherwise well-established polymer model system. We use magnetically blocked CoFe2O4 nanoparticles as tracers and systematically vary their hydrodynamic size by coating them with a silica shell. On the polymer side, we employ aqueous solutions of poly(ethylene glycol) (PEG) by varying molar mass M and volume fraction φ. The complex Brownian relaxation behavior of the tracer particles in solutions of systematically varied composition is investigated by means of AC susceptometry (ACS), and the results provide access to frequency dependent rheological properties. The size-dependent particle diffusivity is evaluated based on theoretical descriptions and macroscopic measurements. The results allow the classification of the investigated compositions into three regimes, taking into account the probe particle size and the length scales of the polymer solution. While a fuzzy cross-over is indicated between the well-known macroscopic behavior and structurally dominated spectra, where the hydrodynamic radius is equal to the radius of gyration of the polymer (rh â¼ Rg), the frequency-related scaling behavior is dominated by the correlation length ξ respectively by the tube diameter a in entangled solutions for rh < Rg.
RESUMO
Monocrystalline, yet porous mosaic platelets of cobalt ferrite, CoFe2 O4 , can be synthesized from a layered double hydroxide (LDH) precursor by thermal decomposition. Using an equimolar mixture of Fe2+ , Co2+ , and Fe3+ during co-precipitation, a mixture of LDH, (FeII CoII )2/3 FeIII1/3 (OH)2 (CO3 )1/6 â m H2 O, and the target spinel CoFe2 O4 can be obtained in the precursor. During calcination, the remaining FeII fraction of the LDH is oxidized to FeIII leading to an overall Co2+ :Fe3+ ratio of 1:2 as required for spinel crystallization. This pre-adjustment of the spinel composition in the LDH precursor suggests a topotactic crystallization of cobalt ferrite and yields phase pure spinel in unusual anisotropic platelet morphology. The preferred topotactic relationship in most particles is [111]Spinel â¥[001]LDH . Due to the anion decomposition, holes are formed throughout the quasi monocrystalline platelets. This synthesis approach can be used for different ferrites and the unique microstructure leads to unusual chemical properties as shown by the application of the ex-LDH cobalt ferrite as catalyst in the selective oxidation of 2-propanol. Compared to commercial cobalt ferrite, which mainly catalyzes the oxidative dehydrogenation to acetone, the main reaction over the novel ex-LDH cobalt is dehydration to propene. Moreover, the oxygen evolution reaction (OER) activity of the ex-LDH catalyst was markedly higher compared to the commercial material.
RESUMO
Nearly phase-pure bismuth ferrite particles were formed by thermolysis of the single-source precursor [Cp(CO)2FeBi(OAc)2] (1) in octadecene at 245 °C, followed by subsequent calcination at 600 °C for 3 h. In contrast, the slightly modified compound [Cp(CO)2FeBi(O2C(t)Bu)2] (2) yielded only mixtures of different bismuth oxide phases, revealing the distinctive influence of molecular design in material synthesis. The chemical composition, morphology, and crystallinity of the resulting materials were investigated by X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. In addition, the optical properties were investigated by Fourier transform infrared and UV-vis spectroscopies, showing a strong band gap absorption in the visible range at 590 nm (2.2 eV). The magnetic behavior was probed by vibrating-sample and superconducting quantum interference device magnetometry, as well as (57)Fe Mössbauer spectroscopy.
RESUMO
Spin-state switching in iron(II) complexes composed of ligands featuring moderate ligand-field strength-for example, 2,6-bi(1H-pyrazol-1-yl)pyridine (BPP)-is dependent on many factors. Herein, we show that spin-state switching in isomeric iron(II) complexes composed of BPP-based ligands-ethyl 2,6-bis(1H-pyrazol-1-yl)isonicotinate (BPP-COOEt, L1) and (2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)methylacetate (BPP-CH2OCOMe, L2)-is dependent on the nature of the substituent at the BPP skeleton. Bi-stable spin-state switching-with a thermal hysteresis width (ΔT1/2) of 44 K and switching temperature (T1/2) = 298 K in the first cycle-is observed for complex 1·CH3CN composed of L1 and BF4- counter anions. Conversely, the solvent-free isomeric counterpart of 1·CH3CN-complex 2a, composed of L2 and BF4- counter anions-was trapped in the high-spin (HS) state. For one of the polymorphs of complex 2b·CH3CN-2b·CH3CN-Y, Y denotes yellow colour of the crystals-composed of L2 and ClO4- counter anions, a gradual and non-hysteretic SCO is observed with T1/2 = 234 K. Complexes 1·CH3CN and 2b·CH3CN-Y also underwent light-induced spin-state switching at 5 K due to the light-induced excited spin-state trapping (LIESST) effect. Structures of the low-spin (LS) and HS forms of complex 1·CH3CN revealed that spin-state switching goes hand-in-hand with pronounced distortion of the trans-N{pyridyl}-Fe-N{pyridyl} angle (Ï), whereas such distortion is not observed for 2b·CH3CN-Y. This observation points that distortion is one of the factors making the spin-state switching of 1·CH3CN hysteretic in the solid state. The observation of bi-stable spin-state switching with T1/2 centred at room temperature for 1·CH3CN indicates that technologically relevant spin-state switching profiles based on mononuclear iron(II) complexes can be obtained.