RESUMO
NGS-based multiple gene panel resequencing in combination with a high resolution CGH-array was used to identify genetic risk factors for hereditary breast and/or ovarian cancer in 237 high risk patients who were previously tested negative for pathogenic BRCA1/2 variants. All patients were screened for pathogenic variants in 94 different cancer predisposing genes. We identified 32 pathogenic variants in 14 different genes (ATM, BLM, BRCA1, CDH1, CHEK2, FANCG, FANCM, FH, HRAS, PALB2, PMS2, PTEN, RAD51C and NBN) in 30 patients (12.7%). Two pathogenic BRCA1 variants that were previously undetected due to less comprehensive and sensitive methods were found. Five pathogenic variants are novel, three of which occur in genes yet unrelated to hereditary breast and/or ovarian cancer (FANCG, FH and HRAS). In our cohort we discovered a remarkably high frequency of truncating variants in FANCM (2.1%), which has recently been suggested as a susceptibility gene for hereditary breast cancer. Two patients of our cohort carried two different pathogenic variants each and 10 other patients in whom a pathogenic variant was confirmed also harbored a variant of unknown significance in a breast and ovarian cancer susceptibility gene. We were able to identify pathogenic variants predisposing for tumor formation in 12.3% of BRCA1/2 negative breast and/or ovarian cancer patients.
Assuntos
Neoplasias da Mama Masculina/genética , Neoplasias da Mama/genética , DNA Helicases/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Neoplasias Ovarianas/genética , Adolescente , Adulto , Idoso , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/patologia , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Testes Genéticos , Humanos , Masculino , Anamnese , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: Microglia are considered a major target for modulating neuroinflammatory and neurodegenerative disease processes. Upon activation, microglia secrete inflammatory mediators that contribute to the resolution or to further enhancement of damage in the central nervous system (CNS). Therefore, it is important to study the intracellular pathways that are involved in the expression of the inflammatory mediators. Particularly, the role of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and glycogen synthase kinase-3 (GSK-3) pathways in activated microglia is unclear. Thus, in the present study we investigated the role of Akt and its downstream pathways, GSK-3 and mTOR, in lipopolysaccharide (LPS)-activated primary rat microglia by pharmacological inhibition of these pathways in regard to the expression of cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1) and to the production of prostaglandin (PG) E2 and PGD2. FINDINGS: We show that inhibition of Akt by the Akt inhibitor X enhanced the production of PGE2 and PGD2 without affecting the expression of COX-2, mPGES-1, mPGES-2 and cytosolic prostaglandin E synthase (cPGES). Moreover, inhibition of GSK-3 reduced the expression of both COX-2 and mPGES-1. In contrast, the mTOR inhibitor rapamycin enhanced both COX-2 and mPGES-1 immunoreactivity and the release of PGE2 and PGD2. Interestingly, NVP-BEZ235, a dual PI3K/mTOR inhibitor, enhanced COX-2 and reduced mPGES-1 immunoreactivity, albeit PGE2 and PGD2 levels were enhanced in LPS-stimulated microglia. However, this compound also increased PGE2 in non-stimulated microglia. CONCLUSION: Taken together, we demonstrate that blockade of mTOR and/or PI3K/Akt enhances prostanoid production and that PI3K/Akt, GSK-3 and mTOR differently regulate the expression of mPGES-1 and COX-2 in activated primary microglia. Therefore, these pathways are potential targets for the development of novel strategies to modulate neuroinflammation.
Assuntos
Ciclo-Oxigenase 2/metabolismo , Oxirredutases Intramoleculares/metabolismo , Microglia/efeitos dos fármacos , Proteína Oncogênica v-akt/metabolismo , Polissacarídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Microglia/enzimologia , Prostaglandina-E Sintases , Ratos , Ratos Wistar , Serina-Treonina Quinases TOR/metabolismoRESUMO
Aicardi-Goutières syndrome (AGS) is a hereditary early onset encephalopathy. AGS patients display variable clinical manifestations including intracranial calcification, cerebral atrophy, white matter abnormalities and characteristic leukocytosis as well as a constitutive upregulation of type I IFN production indicative of a type I interferonopathy. Seven genes (SAMHD1, TREX1, RNASEH2B, RNASEH2C, RNASEH2A, ADAR1, IFIH1) have been associated with the AGS phenotype, up to now. Here, we describe the generation of three induced pluripotent stem cell lines from a patient with a deletion of coding exons 14 and 15 of the SAMHD1 gene.
Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Genômica/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Malformações do Sistema Nervoso/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Animais , Humanos , MasculinoRESUMO
Resveratrol, a polyphenol present in grapes and red wine, has been studied due to its vast pharmacological activity. It has been demonstrated that resveratrol inhibits production of inflammatory mediators in different in vitro and in vivo models. Our group recently demonstrated that resveratrol reduced the production of prostaglandin (PG) E2 and 8-isoprostane in rat activated microglia. In a microglial-neuronal coculture, resveratrol reduced neuronal death induced by activated microglia. However, less is known about its direct roles in neurons. In the present study, we investigated the effects of resveratrol on interleukin (IL)-1beta stimulated SK-N-SH cells. Resveratrol (0.1-5 microM) did not reduce the expression of cyclooxygenase (COX)-2 and microsomal PGE2 synthase-1 (mPGES-1), although it drastically reduced PGE2 and PGD2 content in IL-1beta-stimulated SK-N-SH cells. This effect was due, in part, to a reduction in COX enzymatic activity, mainly COX-2, at lower doses of resveratrol. The production of 8-iso-PGF2alpha, a marker of cellular free radical generation, was significantly reduced by resveratrol. The present work provides evidence that resveratrol reduces the formation of prostaglandins in neuroblastoma cells by reducing the enzymatic activity of inducible enzymes, such as COX-2, and not the transcription of the PG synthases, as demonstrated elsewhere.