Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Small ; 19(38): e2302302, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37211700

RESUMO

In this paper, Au@Ag nanopencil is designed as a multimodality plasmonic nanoprobe based on asymmetric etching for the detection of SCN- and ClO- . Au@Ag nanopencil with Au tip and Au@Ag rod is prepared by asymmetric tailoring of uniformly grown silver-covered gold nanopyramids under the combined effect of partial galvanic replacement and redox reaction. By asymmetric etching in different systems, Au@Ag nanopencil exhibits diversified changes in the plasmonic absorption band: O2 •- facilitated by SCN- etches Au@Ag rod from the end to the tip, causing a blue shift of the localized surface plasmon resonance (LSPR) peak as the aspect ratio decreases; while the ClO- can retain Au@Ag shell and etch Ag within rod from the tip to the end, causing a redshift of the LSPR peak as the coupling resonance weakens. Based on peak shifts in different directions, a multimodality detection of SCN- and ClO- has been established. The results demonstrate the detection limits of SCN- and ClO- are 160 and 6.7 nm, and the linear ranges are 1-600 µm and 0.05-13 µm, respectively. The finely designed Au@Ag nanopencil not only broadens the horizon of designing heterogeneous structures, but also enriches the strategy of constructing multimodality sensing platform.

2.
Mikrochim Acta ; 189(12): 470, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36435950

RESUMO

Plasmonic core-satellite nanostructures assembled from simple building blocks have attracted extensive attention since they were reported by the way of DNA-directed assembly in 1998, because of their unique enhanced and synergistic optical properties and widespread potential applications in biosensing, imaging, drug delivery, and diagnostics. In this review, we introduce the synthetic methods of core-satellite nanostructures, emphazising the bottom-up synthesis method, including DNA, molecular, protein, peptide, amino acids, metal ion-assisted assembly, electrostatic adsorption assembly, clicked-to-assembly, and in situ deposition. Than we review and discuss their morphology classification, and summarize influencing factors of morphology. This is followed by overviews on optical properties, including localized surface plasmon resonance, surface-enhanced Raman scattering, surface-enhanced fluorescence and quenching, and applications in the biomedical field. Finally, the challenges and prospects of these kinds of nanostructures are discussed.


Assuntos
Nanoestruturas , Nanoestruturas/química , Ressonância de Plasmônio de Superfície/métodos , Análise Espectral Raman , DNA , Sistemas de Liberação de Medicamentos
3.
Nanotechnology ; 32(44)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34320484

RESUMO

In this paper, the optical properties and local electric field distribution of transverse plasmon mode of a single pentagonal gold nanotube are studied for the first time by the discrete dipole approximation (DDA). We find that the transverse plasmon peaks can nonlinearly red shift from visible to infrared region via controlling the inner diameter. In addition, the transverse plasmon peak firstly blue shifts and then red shifts in the visible region with the increase of outer diameter. Further analysis shows that the spectra red shift with the increase of outer diameters when scattering is dominant. Local electric field analysis reveals that transverse plasmon resonance peaks of gold nanotube mainly come from dipole resonance. When the tube wall is thin enough, multi-polar plasmon resonance mode will be generated, and the number of peaks will be increased. The surface charges of inner and outer tube walls are changed by tuning the inner diameter and outer diameter parameters of pentagonal gold nanotube. The selective controlling transverse plasmon spectra of gold nanotube are realized, which is of great significance to the study of optical properties of gold nanotube and the application of molecular detection and biological imaging.

4.
Mikrochim Acta ; 188(10): 345, 2021 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-34537870

RESUMO

Heterodimers of metal nanoparticles consist of two metals, come in many sizes and adopt various shapes. They offer unique properties due to the presence of two metals and have the extraordinary flexibility needed to serve as a multipurpose platform for diverse applications in areas including photonics, sensing, and catalysis. Heterodimer nanoparticles contain different metals that contribute to extraordinary surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), and catalytic properties. These properties make them versatile molecules that can be used in intracellular imaging, as antibacterial agents, as photocatalytic and biological macromolecules and for the detection of chemical substances. Moreover, heterodimer nanoparticles are composed of the two metals within larger molecules that provide more choices for modification and application. In this review, we briefly summarize the lesser-known aspects of heterodimers, including some of their properties, and present concrete examples of recent progress in synthesis and applications. This review provides a perspective on achievements and suggests a framework for future research with a focus on the synthesis and application of heterodimers. We also explore the possible applications of heterodimer nanoparticles based on their unique properties.


Assuntos
Nanopartículas Metálicas , Animais , Dimerização , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura
5.
Mikrochim Acta ; 188(8): 258, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34268648

RESUMO

Pathogenic bacteria have become a huge threat to social health and economy for their frighteningly infectious and lethal capacity. It is quite important to make a diagnosis in advance to prevent infection or allow a rapid treatment after infection. Noble metal nanoparticles, due to their unique physicochemical properties, especially optical properties, have drawn a great attention during the past decades and have been widely applied into all kinds of fields related to human health. By utilizing these noble metal nanoparticles, optical diagnosis platforms towards pathogenic bacteria have emerged continually, providing highly sensitive, selective, and particularly facile detection tools for clinic or point-of-care diagnosis. This review summarizes the recent development in this field. It begins with a brief introduction of pathogenic bacteria and noble metal nanoparticles. And then, optical detection methods are systematically discussed in three distinct aspects. In addition to these proof-of-concept methods, corresponding algorithms and point-of-care detection devices are also described. Finally, the review ends up with subjective views on present limitations and some appropriate advice for future research directions.


Assuntos
Bactérias/isolamento & purificação , Técnicas Bacteriológicas/métodos , Técnicas de Química Analítica/métodos , Nanopartículas Metálicas/química , Técnicas Bacteriológicas/instrumentação , Técnicas de Química Analítica/instrumentação , Metais Pesados/química , Testes Imediatos
6.
Nanotechnology ; 31(33): 335505, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32353840

RESUMO

Colorimetric sensing methods based on non-spherically symmetric gold (Au) nanoparticles have become a powerful tool in the field of biomedical detection due to their intriguing plasmonic properties. In this study, Au nanobipyramids (Au NBPs) were used as colorimetric sensing probes to detect ferrous ions (Fe2+) through tip etching. The quick etching of Au NBPs along the longitudinal direction by superoxide radicals generated by the reaction of Fe2+ and H2O2 led local surface plasmon resonance (LSPR) to blue shift and produced vivid color change that could be used for visual inspection. Under the optimal reaction conditions, the peak shift of the Au NBPs and the logarithm of the concentrations of Fe2+ had a linear relationship in the range of 10 nM to 10 µM, with a very low detection limit of 1.29 nM. During the etching process, a different end shape of the Au nanoparticles results in a different process for the morphology transition, which makes the degree of spectral change and detection sensitivity significantly different. In the presence of trace amounts of Fe2+ (<1000 nM), the detection sensitivity of Au NBPs with sharp ends which rely on aspect ratio and truncation is nine times higher than that of gold nanorods with round ends which only rely on aspect ratio. Although the color change of larger-sized Au NBPs was not clear during detection, the LSPR peak shift was more severe. Therefore, the system provides different modes for detecting Fe2+ according to Au NBPs with different sizes and characteristics.

7.
Mikrochim Acta ; 187(11): 612, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33064202

RESUMO

This review (with 106 references) summarizes the latest progress in the synthesis, properties and biomedical applications of gold nanotubes (AuNTs). Following an introduction into the field, a first large section covers two popular AuNTs synthesis methods. The hard template method introduces anodic alumina oxide template (AAO) and track-etched membranes (TeMs), while the sacrificial template method based on galvanic replacement introduces bimetallic, trimetallic AuNTs and AuNT-semiconductor hybrid materials. Then, the factors affecting the morphology of AuNTs are discussed. The next section covers their unique surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and their catalytic properties. This is followed by overviews on the applications of AuNTs in biosensors, protein transportation, photothermal therapy and imaging. Several tables are presented that give an overview on the wealth of synthetic methods, morphology factors and biological application. A concluding section summarizes the current status, addresses current challenges and gives an outlook on potential applications of AuNTs in biochemical detection and drug delivery.Graphical abstract.


Assuntos
Ouro/química , Nanotubos/química , Animais , Catálise , Linhagem Celular Tumoral , Meios de Contraste/química , Técnicas Eletroquímicas , Humanos , Análise Espectral Raman , Ressonância de Plasmônio de Superfície
8.
J Nanosci Nanotechnol ; 14(6): 4072-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24738353

RESUMO

Gold nanorods of different aspect ratios had been synthesized using seed mediated growth method. The formed gold nanorods had been characterized by the absorption and transmission electron microscopy (TEM) measurements. The obtained gold nanorods were used to study the quenched effect on fluorescence of Eosin Y. Experimental results revealed that Eosin Y molecules adsorbed on the metallic surfaces, suffering strong quenching of their fluorescence and the quenching efficiency was different for different aspect ratio. Using dielectric coated gold nanorods model, the probable mechanism of aspect ratio dependent quenching efficiency was obtained by numerical calculation based on fluorescence resonance energy transfer and quasi-static theory. The calculation results showed that the non-monotonic changing of fluorescence quenching was attributed to competing effects of aspect ratio and the dielectric constant of coated shell on surface plasmon resonance.


Assuntos
Amarelo de Eosina-(YS)/análise , Amarelo de Eosina-(YS)/química , Ouro/química , Nanopartículas Metálicas/química , Nanotubos/química , Espectrometria de Fluorescência/métodos , Nanotubos/ultraestrutura
9.
Anal Chim Acta ; 1296: 342291, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401925

RESUMO

Microfluidic systems have attracted considerable attention due to their low reagent consumption, short analysis time, and ease of integration in comparison to conventional methods, but still suffer from shortcomings in sensitivity and selectivity. Surface enhanced Raman scattering (SERS) offers several advantages in the detection of compounds, including label-free detection at the single-molecule level, and the narrow Raman peak width for multiplexing. Combining microfluidics with SERS is a viable way to improve their detection sensitivity. Researchers have recently developed several SERS coupled microfluidic platforms with substantial potential for biomolecular detection, cellular and bacterial analysis, and hazardous substance detection. We review the current development of SERS coupled microfluidic platforms, illustrate their detection principles and construction, and summarize the latest applications in biology, environmental protection and food safety. In addition, we innovatively summarize the current status of SERS coupled multi-mode microfluidic platforms with other detection technologies. Finally, we discuss the challenges and countermeasures during the development of SERS coupled microfluidic platforms, as well as predict the future development trend of SERS coupled microfluidic platforms.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124472, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38761473

RESUMO

A novel surface-enhanced Raman scattering (SERS) composite substrates on the basis of Ag triangular nanoplates(Ag TNPs)-modified SiO2 photonic crystals (PC) is fabricated and applied to the SERS detection of malachite green (MG). It consists of uniformly arranged Ag TNP@SiO2, a new PC. Notably, Ag TNP are uniformly aligned on the SiO2 surface, forming a three-dimensional high-density hotspot nanostructure. With the tip "hot spots" of Ag TNPs, Bragg diffraction of SiO2 and coupling enhancement between Ag TNPs and SiO2, the SERS enhancement of this composite substrates was multiplied. The effect on the SERS of Ag TNP@SiO2 composite substrate was systematically optimized by tuning Ag TNP size, size of SiO2 microspheres, coverage of Ag TNPs on SiO2 and fabrication method of Ag TNPs and PC. Moreover, the uniform of SERS composite substrates and Raman signal was dramatically increased by the method of vertical deposition. Eventually, the SERS composite substrates were employed in MG detection. Its broad detection range of 1 pM-1 µM and low limit of detection (LOD) of 0.49 pM indicated acceptable sensitivity and repeatability. This work illustrates the promising applicability in food safety analysis based on SERS composite substrates composed by Ag TNP@SiO2 with numerous SERS enhancements and excellent stability.

11.
ACS Sens ; 9(2): 942-954, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38295764

RESUMO

The development of surface-enhanced Raman scattering (SERS) probes with high sensitivity and stability is imminent to improve the accuracy of cancer diagnosis. Here, an exclusive core-Janus satellite (CJS) assembly was constructed by a hierarchical assembly strategy in which the Au-Ag Janus satellite is vertically self-aligned on the core surface. In the process, a silica shell template was ingeniously employed to asymmetrically mask the presatellites for the in situ formation of the Janus structure, and a series of Janus satellites with different morphologies were developed by regulating the encapsulated area of the presatellites. The ordered-oriented arrangement of Au-Ag Janus and unique heterojunction morphology permit CJS assemblies, featuring two types of plasmonic nanogaps, including intrananocrevices for individual Janus and internanogaps between neighboring Janus, thereby multiplying the "hotspots" compared to conventional core-monotonous satellites, which contributes to superior SERS activity. As anticipated, the enhancement factor of CJS assemblies was as high as 3.8 × 108. Moreover, it is intriguing that the directional distribution and head physically immobilized by Janus provided uniform and stable SERS signals. The SERS probe based on the CJS assembly for the detection of carbohydrate antigen 19-9 resulted in an ultrahigh sensitivity with a limit of detection of 3.7 × 10-5 IU·mL-1, which is nearly 10 times lower than other SERS probes, and a wide detection range of 3 × 10-5 to 1 × 104 IU·mL-1. The CJS assembly with excellent SERS performance is promising to advance further development of the early diagnosis of pancreatic cancer.


Assuntos
Antígeno CA-19-9 , Prata , Prata/química , Ouro/química , Análise Espectral Raman/métodos , Dióxido de Silício
12.
Talanta ; 275: 126131, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663064

RESUMO

The development of an ultra-sensitive detection method for carbohydrate antigen 19-9 (CA19-9) is very important for the early diagnosis of pancreatic cancer. In this work, we developed a new strategy to achieve a variety of Au-Ag hybrid nanoparticles from janus to core-satellite which is controlled by the volume of AgNO3 and the concentration of benzimidazolecarboxylic acid (MBIA). With the volume of AgNO3 increased, Au-Ag hybrid nanoparticles changed from janus to core-satellite and the characteristic absorption peak showed two opposite trends. The size and number of Ag islands were determined by the concentration of MBIA. Au-Ag core-satellites nanoparticles with a large number of small-sized Ag have the highest SERS intensity. Then we used them as SERS nanotags and Au-Polystyrene nanospheres modified by captured anti-CA19-9 antibody as solid substrates to realize the ultra-sensitive detection of CA19-9 with a low limit of detection of 1.25 × 10-6 IU/mL and a wide linear range of 1.00 × 10-5 -1.00 × 104 IU/mL. This work not only demonstrates that MBIA and AgNO3 were the key factors in the growth of Au-Ag hybrid nanoparticles from 2D to 3D structure but also supplies an ultra-sensitive detection method for CA19-9 which has a potential practicability in the clinical early diagnoses of pancreatic cancer.


Assuntos
Antígeno CA-19-9 , Ouro , Nanopartículas Metálicas , Prata , Análise Espectral Raman , Ouro/química , Prata/química , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Imunoensaio/métodos , Humanos , Antígeno CA-19-9/sangue , Limite de Detecção , Neoplasias Pancreáticas/diagnóstico , Fenômenos Ópticos
13.
Food Chem ; 451: 139454, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703725

RESUMO

Morphology regulation of heterodimer nanoparticles and the use of their asymmetric features for further practical applications are crucial because of the rich optical properties and various combinations of heterodimers. This work used silicon to asymmetrically wrap half of a gold sphere and grew gold branches on the bare gold surface to form heterogeneous nano pineapples (NPPs) which can effectively improve Surface-enhanced Raman scattering (SERS) properties through chemical enhancement and lightning-rod effect respectively. The asymmetric structures of NPPs enabled them to self-assemble into the monolayer membrane with consistent branch orientation. The prepared substrate had high homogeneity and better SERS ability than disorganized substrates, and achieved reliable detection of malachite green (MG) in clams with a detection limit of 7.8 × 10-11 M. This work provided a guide to further revise the morphology of heterodimers and a new idea for the use of asymmetric dimers for practically photochemical and biomedical sensing.


Assuntos
Ouro , Corantes de Rosanilina , Silício , Análise Espectral Raman , Corantes de Rosanilina/química , Análise Espectral Raman/métodos , Ouro/química , Silício/química , Animais , Ananas/química , Nanopartículas Metálicas/química , Bivalves/química , Limite de Detecção , Propriedades de Superfície
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123154, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478705

RESUMO

Surface-enhanced Raman scattering (SERS) based on rigid substrates has been widely used in biomedical detection due to its high sensitivity and specificity. However, the tedious operation steps for preparing SERS rigid substrates limited their applications in real-world detection. Compared with general rigid substrate, the flexible substrate has the advantages of simple preparation and easy portability, which are suitable for rapid, wearable and personalized detection in the field of point-of-care test. Herein, the flexible SERS substrates employing copolymer were fabricated and used for detection of skin cortisol, a biomarker for evaluating psychological stress in sweat. Silver triangle nanoplates with sharp corner were used as enhanced particles, and transferred to polyvinyl chloride/styrene-ethylene-butene-styrene copolymer (PVC/SEBS) film through three-phase interface self-assembly. By adjusting the size of silver nanoparticles, the ratio of PVC to SEBS in the polymer film, and the number of transfers of self-assembled silver films, the enhancement effect of the flexible SERS substrate was maximized. In addition, functionalization of the flexible SERS substrate with cortisol antibodies is used to achieve specific detection of cortisol on the skin surface. Under the optimal conditions, the Raman peak intensities at 1268 and 1500 cm-1 of the cortisol had a good linear relationship with the logarithm of its concentration in the range of 10-7 to 10-3 M, and the detection limits were 5.47 × 10-8 M and 5.51 × 10-8 M, respectively. The flexible silver triangle nanoplates SERS substrate constructed by self-assembly in the three-phase interface has the characteristics of good specificity and high sensitivity, which has potential for transdermal cortisol wearable detection, providing a feasible method for the rapid evaluating psychological stress level.


Assuntos
Hidrocortisona , Nanopartículas Metálicas , Prata , Polímeros , Pele , Análise Espectral Raman
15.
J Mater Chem B ; 11(35): 8368-8386, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37580958

RESUMO

Bladder cancer (BC) is one of the most common malignant tumors in the urinary system, and its high recurrence rate is a great economic burden to patients. Traditional diagnosis and treatment methods have the disadvantages of insufficient targeting, obvious side effects and low sensitivity, which seriously limit the accurate diagnosis and efficient treatment of BC. Due to their small size, easy surface modification, optical properties such as plasmon resonance, and surface enhanced Raman scattering, good electrical conductivity and photothermal conversion properties, nanomaterials have great potential application value in the realization of specific diagnosis and targeted therapy of BC. At present, the application of nanomaterials in the diagnosis and treatment of BC is attracting great attention and achieving rich research results. Therefore, this paper summarizes the recent research on nanomaterials in the diagnosis and treatment of BC, clarifies the existing advantages and disadvantages, and provides theoretical guidance for promoting the accurate diagnosis and efficient treatment of BC.


Assuntos
Nanoestruturas , Neoplasias da Bexiga Urinária , Humanos , Nanotecnologia , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanoestruturas/uso terapêutico , Análise Espectral Raman
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122862, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37220676

RESUMO

Ligand-mediated interface control has been broadly applied as a powerful tool in constructing asymmetric multicomponent nanoparticles (AMNP), and induces the anisotropic growth with fine-tuning morphology, composition, plasmonic property and functionality. As a new kind of AMNP, the synthesis of Janus Au-Ag nanoparticles with tunable negative surface curvature is still a challenge. Here, we demonstrate that the synergistic surface energy effects between gold nanodumbbells (Au NDs) with a negative surface curvature and 4-mercaptobenzoic acid (4-MBA) can direct the site-selective growth of anisotropic silver domains on gold nanodumbbells (Au NDs@Ag NPs). By adjusting the 4-MBA concentration-dependent interfacial energy, the Au NDs@Ag NPs could be continuously tuned from dumbbell-like core-shell structures, to L-shaped Janus, and then rod-like core-shell structures with directional and asymmetric spatial distributions of resizable Ag domains by site-selective growth. Based on the calculation results of discrete dipole approximation (DDA) method, it has been found that the Au NDs@Ag L-shaped Janus NPs with Ag island domains created polarization orientation-dependent plasmonic extinction spectra and hot spots around the negatively curved waist and Ag domains. The L-shaped Janus Au NDs@Ag NPs exhibited significantly plasmonic spectrum properties with four apparent LSPR peaks that cover from visible to near-infrared range and higher surface-enhanced Raman scattering (SERS) activity compared with the original Au NDs. The best SERS enhancement factor of 1.41 × 107 was achieved. This synergistic surface energy effect-based method involving the asymmetric growth of silver coating on gold nanoparticles with negatively curved surface presents a new method to design and fabricate nanometer optical devices based on asymmetric multicomponent nanoparticles.

17.
J Colloid Interface Sci ; 647: 81-92, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37245272

RESUMO

Herein, A novel gold-silver alloy nanobox (AuAgNB)@SiO2-gold nanosphere (AuNP) nanoassembly based on core-shell-satellite structure is fabricated and applied to the surface-enhanced Raman scattering (SERS) detection of S100 calcium-binding protein B protein (S100B). It contains an anisotropic hollow porous AuAgNB core with rough surface, an ultrathin silica interlayer labeled with reporter molecules, and AuNP satellites. The nanoassemblies were systematically optimized by tuning the reporter molecules concentration, silica layer thickness, AuAgNB size, and the size and number of AuNP satellite size. Remarkably, AuNP satellites are adjacent to AuAgNB@SiO2, developing AuAg-SiO2-Au heterogeneous interface. With the strong plasmon coupling between AuAgNB and AuNP satellites, chemical enhancement from heterogeneous interface, and the tip "hot spots" of AuAgNB, the SERS activity of the nanoassemblies was multiply enhanced. Additionally, the stability of nanostructure and Raman signal was significantly improved by the silica interlayer and AuNP satellites. Eventually, the nanoassemblies were applied for S100B detection. It demonstrated satisfactory sensitivity and reproducibility with a wide detection range of 10 fg/mL-10 ng/mL and a limit of detection (LOD) of 1.7 fg/mL. This work based on the AuAgNB@SiO2-AuNP nanoassemblies with multiple SERS enhancements and favorable stability demonstrates the promising application in stroke diagnosis.


Assuntos
Nanopartículas Metálicas , Dióxido de Silício , Dióxido de Silício/química , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Análise Espectral Raman , Ouro/química
18.
J Colloid Interface Sci ; 625: 340-353, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35717848

RESUMO

In this paper, a novel Au@AuAg yolk-shell heterogeneous nanostructure is designed as plasmonic spectroscopic sensor based on surface etching for ultrasensitive detection of trace cobalt ions (Co2+). Due to the surface diffusion of gold atoms, the Ag at one end of the core gold nanobipyramids (Au NBPs) is retained, and Au@AuAg yolk-shell nanostructure with asymmetric core is prepared. The alloy shell is coupled to Au NBPs and the interface of asymmetric Ag respectively, the two local surface plasmon resonance bands will have obvious reverse changes depending on the surface morphology of the shell. By using this distinct plasmon response generated by Co2+ induced surface etching, which is driven by discrepancy of double-peaks, a sensing method has been established to realize multi-information spectral detection of Co2+. There is a good linear relationship between the intensity ratio and the Co2+ concentration in the range of 1-100 nM, in which the limit of detection is 0.2 nM. This method further improves the sensing capability by combining multiple pieces of strongly changing spectral information, and demonstrates great advantages and potential of Au@AuAg yolk-shell heterogeneous nanostructure as a multi-information plasmonic sensor based on etched shell surface for trace detection.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Prata/química , Ressonância de Plasmônio de Superfície
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121037, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189490

RESUMO

In this paper, the longitudinal plasmon mode optical properties and localized electric field distribution of a single pentagonal gold nanotube are investigated for the first time by the discrete dipole approximation. It is found that pentagonal gold nanotube has stronger electric field distribution compared with circular gold nanotubes when the incident wavelength is located at the plasmon resonance peak. Additionally, we observed that the longitudinal plasmon resonance peak can blue shift nonlinearly with increasing wall thickness, but red shifts linearly with the increase of the length of the pentagonal gold nanotube. The localized electric field analysis reveals that the longitudinal plasmon peak of the pentagonal gold nanotube originates from the dipole resonance mode. The local electric field intensity is controlled by the wall thickness and length. Notably, the effect of wall thickness on the longitudinal plasmon resonance and electric field enhancement can be attributed to the change of the plasmon coupling position and intensity. This work has enriched the theoretical research of pentagonal gold nanotubes and provided ideas for the preparation of high sensitivity nanoprobes biosensors.


Assuntos
Técnicas Biossensoriais , Nanotubos , Simulação por Computador , Ouro , Ressonância de Plasmônio de Superfície
20.
Anal Chim Acta ; 1221: 340129, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934405

RESUMO

The etching of gold nanorods/nanobipyramid, or silver-coated nanorods/nanobipyramid inducing plasmon changes represents an efficient strategy to improve the performance of enzyme-linked immunosorbent assay (ELISA). However, the effect of shape on the sensitivity was negligible, especially the thickness of coated silver shell. Here, we propose a plasmonic ELISA for multi-colorimetric detection of CRP based on the etching of Ag-coated Au nanobipyramid (Au NBP@Ag). The effect of silver shell thickness on the sensitivity of plasmon peak shifting was investigated by experiments and DDA calculations. The relationship between the Ag shell thickness and the sensitivity of plasmon peak shifting was obtained. Our results reveal that the thickness of coated Ag shell acts as a key factor in the multi-color change of Au NBP@Ag etching. It is found that Au NBP@Ag with medium Ag shell thickness and rod-like shape has the higher sensitivity and is suitable for sensing. At the optimized most sensitive Ag shell, the detection limit of proposed plasmonic ELISA for CRP was determined to be 0.09 ng/mL with a spectrometer in the range from 0.09 ng/mL to 25 ng/mL. Importantly, the visual detection limit was 0.78 ng/mL, which allows the differential diagnosis with the naked eye. Compared with traditional ELISA with the monochromatic intensity variations, the multi-color ELISA proposed in this study has a large linear range and rich color variation for high-sensitivity and naked-eye semi-quantitative detection.


Assuntos
Colorimetria , Nanopartículas Metálicas , Proteína C-Reativa , Colorimetria/métodos , Ensaio de Imunoadsorção Enzimática , Ouro , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA