Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Vis ; 14: 562-71, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18385792

RESUMO

PURPOSE: To examine whether promiscuous Cre/LoxP recombination happens during gametogenesis in double transgenic mice carrying LoxP modified alleles and Cre transgene driven by tissue-specific promoter outside the gonads of adult mice. METHODS: Cre driver mice were crossbred with reporter mouse lines (e.g., ZEG and Rosa26R) to obtain Cre/ZEG and Cre/Rosa26R double transgenic mice. The frequency of promiscuous LoxP/Cre recombination was determined by the expression of second reporter genes in the offspring of double transgenic mice. RESULTS: The frequency of promiscuous LoxP/Cre recombination varied in different lines of Cre driver mice and in the sex of the same driver mice with higher penetrance in male than in female double transgenic mice. Polymerase chain reaction (PCR) and recombination analysis demonstrate that the recombination of floxed allele occurs during the transition from spermatogonia (diploid) to primary spermatocyte (tetraploid) in the testis. Thereby, target-floxed allele(s) may be ubiquitously ablated in experimental animals intended for tissue-specific gene deletion. CONCLUSIONS: Gametogenesis-associated recombination should always be examined in tissue-specific gene ablation studies.


Assuntos
Alelos , Córnea/metabolismo , Gametogênese/genética , Integrases , Recombinação Genética , Animais , Epitélio Corneano/metabolismo , Feminino , Deleção de Genes , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Genes Reporter , Integrases/genética , Queratina-12/genética , Queratina-12/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Espermatogênese/genética
2.
J Neurosci ; 24(47): 10763-72, 2004 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-15564594

RESUMO

Recent studies suggest that postmitotic neurons can reenter the cell cycle as a prelude to apoptosis after brain injury. However, most dying neurons do not pass the G1/S-phase checkpoint to resume DNA synthesis. The specific factors that trigger abortive DNA synthesis are not characterized. Here we show that the combination of hypoxia and ischemia induces adult rodent neurons to resume DNA synthesis as indicated by incorporation of bromodeoxyuridine (BrdU) and expression of G1/S-phase cell cycle transition markers. After hypoxia-ischemia, the majority of BrdU- and neuronal nuclei (NeuN)-immunoreactive cells are also terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL)-stained, suggesting that they undergo apoptosis. BrdU+ neurons, labeled shortly after hypoxia-ischemia, persist for >5 d but eventually disappear by 28 d. Before disappearing, these BrdU+/NeuN+/TUNEL+ neurons express the proliferating cell marker Ki67, lose the G1-phase cyclin-dependent kinase (CDK) inhibitors p16INK4 and p27Kip1 and show induction of the late G1/S-phase CDK2 activity and phosphorylation of the retinoblastoma protein. This contrasts to kainic acid excitotoxicity and traumatic brain injury, which produce TUNEL-positive neurons without evidence of DNA synthesis or G1/S-phase cell cycle transition. These findings suggest that hypoxia-ischemia triggers neurons to reenter the cell cycle and resume apoptosis-associated DNA synthesis in brain. Our data also suggest that the demonstration of neurogenesis after brain injury requires not only BrdU uptake and mature neuronal markers but also evidence showing absence of apoptotic markers. Manipulating the aberrant apoptosis-associated DNA synthesis that occurs with hypoxia-ischemia and perhaps neurodegenerative diseases could promote neuronal survival and neurogenesis.


Assuntos
Apoptose/fisiologia , Encéfalo/fisiopatologia , DNA/biossíntese , Hipóxia-Isquemia Encefálica/fisiopatologia , Neurônios/fisiologia , Fase S/fisiologia , Adrenalectomia , Fatores Etários , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/fisiopatologia , Bromodesoxiuridina , Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Marcação In Situ das Extremidades Cortadas , Ácido Caínico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
3.
Cereb Cortex ; 17(11): 2585-92, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17259645

RESUMO

The standard method of detecting neurogenesis uses bromodeoxyuridine (BrdU) to label DNA synthesis followed by double labeling with neuronal markers. However, DNA synthesis may occur in events unrelated to neurogenesis including aneuploidy and abortive cell cycle reentry. Hence, it is important to confirm neurogenesis with methods other than BrdU incorporation. To this end, we have generated transgenic nestin-CreER mice that express tamoxifen-inducible Cre recombinase under the control of a nestin enhancer. When crossed with a ubiquitous Enhanced Green Fluorescent Protein (EGFP)-Cre-reporter line, the bitransgenic animals can reveal the nestin-positive progenitors and their progeny with EGFP after tamoxifen induction. This system has many applications including visualization of embryonic neural progenitors, detection of postnatally transformed radial glial cells, and labeling adult neural progenitors in the subventricular zone (SVZ). To examine the contribution of SVZ progenitors to cell replacement after stroke, tamoxifen-induced mice were challenged with focal ischemia or combined ischemia-hypoxia followed by BrdU injection. This analysis revealed only very few EGFP-positive cells outside the SVZ after focal ischemia but robust DNA synthesis by hippocampal neurons without immediate cell death following ischemia-hypoxia. These results suggest that the nestin-CreER system is a useful tool for detecting embryonic and adult neurogensis. They also confirm the existence of nonproliferative DNA synthesis by old neurons after experimental brain injury.


Assuntos
DNA/biossíntese , Hipóxia-Isquemia Encefálica/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Apoptose/genética , Proteínas de Filamentos Intermediários/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Nestina , Receptores de Estrogênio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA