Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 761
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1012023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381773

RESUMO

Protein-level immunodominance patterns against Kaposi sarcoma-associated herpesvirus (KSHV), the aetiologic agent of Kaposi sarcoma (KS), have been revealed from serological probing of whole protein arrays, however, the epitopes that underlie these patterns have not been defined. We recently demonstrated the utility of phage display in high-resolution linear epitope mapping of the KSHV latency-associated nuclear antigen (LANA/ORF73). Here, a VirScan phage immunoprecipitation and sequencing approach, employing a library of 1,988 KSHV proteome-derived peptides, was used to quantify the breadth and magnitude of responses of 59 sub-Saharan African KS patients and 22 KSHV-infected asymptomatic individuals (ASY), and ultimately to support an application of machine-learning-based predictive modeling using the peptide-level responses. Comparing anti-KSHV antibody repertoire revealed that magnitude, not breadth, increased in KS. The most targeted epitopes in both KS and ASY were in the immunodominant proteins, notably, K8.129-56 and ORF65140-168, in addition to LANA. Finally, using unbiased machine-learning-based predictive models, reactivity to a subset of 25 discriminative peptides was demonstrated to successfully classify KS patients from asymptomatic individuals. Our study provides the highest resolution mapping of antigenicity across the entire KSHV proteome to date, which is vital to discern mechanisms of viral pathogenesis, to define prognostic biomarkers, and to design effective vaccine and therapeutic strategies. Future studies will investigate the diagnostic, prognostic, and therapeutic potential of the 25 discriminative peptides.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por Herpesviridae , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/metabolismo , Proteoma/metabolismo , Antígenos Virais , Proteínas Nucleares/metabolismo , Infecções por Herpesviridae/complicações , Peptídeos/metabolismo , Epitopos/metabolismo
2.
Mol Cell Proteomics ; 22(4): 100506, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796642

RESUMO

Major histocompatibility complex (MHC)-bound peptides that originate from tumor-specific genetic alterations, known as neoantigens, are an important class of anticancer therapeutic targets. Accurately predicting peptide presentation by MHC complexes is a key aspect of discovering therapeutically relevant neoantigens. Technological improvements in mass spectrometry-based immunopeptidomics and advanced modeling techniques have vastly improved MHC presentation prediction over the past 2 decades. However, improvement in the accuracy of prediction algorithms is needed for clinical applications like the development of personalized cancer vaccines, the discovery of biomarkers for response to immunotherapies, and the quantification of autoimmune risk in gene therapies. Toward this end, we generated allele-specific immunopeptidomics data using 25 monoallelic cell lines and created Systematic Human Leukocyte Antigen (HLA) Epitope Ranking Pan Algorithm (SHERPA), a pan-allelic MHC-peptide algorithm for predicting MHC-peptide binding and presentation. In contrast to previously published large-scale monoallelic data, we used an HLA-null K562 parental cell line and a stable transfection of HLA allele to better emulate native presentation. Our dataset includes five previously unprofiled alleles that expand MHC diversity in the training data and extend allelic coverage in underprofiled populations. To improve generalizability, SHERPA systematically integrates 128 monoallelic and 384 multiallelic samples with publicly available immunoproteomics data and binding assay data. Using this dataset, we developed two features that empirically estimate the propensities of genes and specific regions within gene bodies to engender immunopeptides to represent antigen processing. Using a composite model constructed with gradient boosting decision trees, multiallelic deconvolution, and 2.15 million peptides encompassing 167 alleles, we achieved a 1.44-fold improvement of positive predictive value compared with existing tools when evaluated on independent monoallelic datasets and a 1.17-fold improvement when evaluating on tumor samples. With a high degree of accuracy, SHERPA has the potential to enable precision neoantigen discovery for future clinical applications.


Assuntos
Neoplasias , Peptídeos , Humanos , Peptídeos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II , Complexo Principal de Histocompatibilidade , Antígenos HLA/genética , Antígenos HLA/metabolismo
3.
J Infect Dis ; 229(5): 1306-1316, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38243412

RESUMO

BACKGROUND: Human immunodeficiency virus 1 (HIV-1) tissue reservoirs remain the main obstacle against an HIV cure. Limited information exists regarding cannabis's effects on HIV-1 infections in vivo, and the impact of cannabis use on HIV-1 parenchymal tissue reservoirs is unexplored. METHODS: To investigate whether cannabis use alters HIV-1 tissue reservoirs, we systematically collected 21 postmortem brain and peripheral tissues from 20 men with subtype C HIV-1 and with suppressed viral load enrolled in Zambia, 10 of whom tested positive for cannabis use. The tissue distribution and copies of subtype C HIV-1 LTR, gag, env DNA and RNA, and the relative mRNA levels of cytokines IL-1ß, IL-6, IL-10, and TGF-ß1 were quantified using PCR-based approaches. Utilizing generalized linear mixed models we compared persons with HIV-1 and suppressed viral load, with and without cannabis use. RESULTS: The odds of tissues harboring HIV-1 DNA and the viral DNA copies in those tissues were significantly lower in persons using cannabis. Moreover, the transcription levels of proinflammatory cytokines IL-1ß and IL-6 in lymphoid tissues of persons using cannabis were also significantly lower. CONCLUSIONS: Our findings suggested that cannabis use is associated with reduced sizes and inflammatory cytokine expression of subtype C HIV-1 reservoirs in men with suppressed viral load.


Assuntos
Citocinas , Infecções por HIV , HIV-1 , Carga Viral , Humanos , Masculino , HIV-1/genética , HIV-1/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Adulto , Citocinas/metabolismo , Citocinas/genética , Provírus/genética , Pessoa de Meia-Idade , Zâmbia , DNA Viral , Antirretrovirais/uso terapêutico , Encéfalo/virologia , Encéfalo/metabolismo , Adulto Jovem , Uso da Maconha/metabolismo
4.
PLoS Pathog ; 18(12): e1011033, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36534707

RESUMO

The humoral antibody response against Kaposi sarcoma-associated herpesvirus (KSHV) in infected individuals has been characterized demonstrating the latency-associated nuclear antigen (LANA) as the most antigenic KSHV protein. Despite the antigenicity of the protein, specific LANA epitopes have not been systematically characterized. Here, we utilized a bacteriophage T7 library, which displays 56-amino acid KSHV LANA peptides with 28-amino acid overlap (VirScan), to define those epitopes in LANA targeted by antibodies from a cohort of 62 sub-Saharan African Kaposi sarcoma (KS) patients and 22 KSHV-infected asymptomatic controls. Intra- and inter-patient breadth and magnitude of the anti-LANA responses were quantified at the peptide and amino acid levels. From these data, we derived a detailed epitope annotation of the entire LANA protein, with a high-resolution focus on the N- and C-termini. Overall, the central repeat region was highly antigenic, but the responses to this region could not be confidently mapped due to its high variability. The highly conserved N-terminus was targeted with low breadth and magnitude. In a minority of individuals, antibodies specific to the nuclear localization sequence and a portion of the proline-rich regions of the N-terminus were evident. In contrast, the first half of the conserved C-terminal domain was consistently targeted with high magnitude. Unfortunately, this region was not included in LANA partial C-terminal crystal structures, however, it was predicted to adopt predominantly random-coil structure. Coupled with functional and secondary structure domain predictions, VirScan revealed fine resolution epitope mapping of the N- and C-terminal domains of LANA that is consistent with previous antigenicity studies and may prove useful to correlate KSHV humoral immunity with pathogenesis.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Epitopos , Linhagem Celular , Antígenos Virais/metabolismo , Peptídeos , Aminoácidos
5.
J Neurovirol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943022

RESUMO

Although previous studies have suggested that subtype B HIV-1 proviruses in the brain are associated with physiological changes and immune activation accompanied with microgliosis and astrogliosis, and indicated that both HIV-1 subtype variation and geographical location might influence the neuropathogenicity of HIV-1 in the brain. The natural course of neuropathogenesis of the most widespread subtype C HIV-1 has not been adequately investigated, especially for people living with HIV (PLWH) in sub-Saharan Africa. To characterize the natural neuropathology of subtype C HIV-1, postmortem frontal lobe and basal ganglia tissues were collected from nine ART-naïve individuals who died of late-stage AIDS with subtype C HIV-1 infection, and eight uninfected deceased individuals as controls. Histological staining was performed on all brain tissues to assess brain pathologies. Immunohistochemistry (IHC) against CD4, p24, Iba-1, GFAP, and CD8 in all brain tissues was conducted to evaluate potential viral production and immune activation. Histological results showed mild perivascular cuffs of lymphocytes only in a minority of the infected individuals. Viral capsid p24 protein was only detected in circulating immune cells of one infected individual, suggesting a lack of productive HIV-1 infection of the brain even at the late-stage of AIDS. Notably, similar levels of Iba-1 or GFAP between HIV + and HIV- brain tissues indicated a lack of microgliosis and astrogliosis, respectively. Similar levels of CD8 + cytotoxic T lymphocyte (CTL) infiltration between HIV + and HIV- brain tissues indicated CTL were not likely to be involved within subtype C HIV-1 infected participants of this cohort. Results from this subtype C HIV-1 study suggest that there is a lack of productive infection and limited neuropathogenesis by subtype C HIV-1 even at late-stage disease, which is in contrast to what was reported for subtype B HIV-1 by other investigators.

6.
J Cardiovasc Electrophysiol ; 34(4): 880-887, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36682068

RESUMO

INTRODUCTION: Esophageal injury is a well-known complication associated with catheter ablation. Though novel methods to mitigate esophageal injury have been developed, few studies have evaluated temperature gradients with catheter ablation across the posterior wall of the left atrium, interstitium, and esophagus. METHODS: To investigate temperature gradients across the tissue, we developed a porcine heart-esophageal model to perform ex vivo catheter ablation on the posterior wall of the left atrium (LA), with juxtaposed interstitial tissue and esophagus. Circulating saline (5 L/min) was used to mimic blood flow along the LA and alteration of ionic content to modulate impedance. Thermistors along the region of interest were used to analyze temperature gradients. Varying time and power, radiofrequency (RF) ablation lesions were applied with an externally irrigated ablation catheter. Ablation strategies were divided into standard approaches (SAs, 10-15 g, 25-35 W, 30 s) or high-power short duration (HPSD, 10-15 g, 40-50 W, 10 s). Temperature gradients, time to the maximum measured temperature, and the relationship between measured temperature as a function of distance from the site of ablation was analyzed. RESULTS: In total, five experiments were conducted each utilizing new porcine posterior LA wall-esophageal specimens for RF ablation (n = 60 lesions each for SA and HPSD). For both SA and HPSD, maximum temperature rise from baseline was markedly higher at the anterior wall (AW) of the esophagus compared to the esophageal lumen (SA: 4.29°C vs. 0.41°C, p < .0001 and HPSD: 3.13°C vs. 0.28°C, p < .0001). Across ablation strategies, the average temperature rise at the AW of the esophagus was significantly higher with SA relative to HPSD ablation (4.29°C vs. 3.13°C, p = .01). From the start of ablation, the average time to reach a maximum temperature as measured at the AW of the esophagus with SA was 36.49 ± 12.12 s, compared to 16.57 ± 4.54 s with HPSD ablation, p < .0001. Fit to a linear scale, a 0.37°C drop in temperature was seen for every 1 cm increase in distance from the site of ablation and thermistor location at the AW of the esophagus. CONCLUSION: Both SA and HPSD ablation strategies resulted in markedly higher temperatures measured at the AW of the esophagus compared to the esophageal lumen, raising concern about the value of clinical intraluminal temperature monitoring. The temperature rise at the AW was lower with HPSD. A significant time delay was seen to reach the maximum measured temperature and a modest increase in distance between the site of ablation and thermistor location impacted the accuracy of monitored temperatures.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Animais , Suínos , Temperatura , Fibrilação Atrial/cirurgia , Átrios do Coração , Esôfago/lesões , Ablação por Cateter/métodos
7.
Catheter Cardiovasc Interv ; 102(7): 1357-1363, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37735946

RESUMO

OBJECTIVES: We sought to produce a simple scoring system that can be applied at clinical visits before transcatheter aortic valve replacement (TAVR) to stratify the risk of permanent pacemaker (PPM) after the procedure. BACKGROUND: Atrioventricular block is a known complication of TAVR. Current models for predicting the risk of PPM after TAVR are not designed to be applied clinically to assist with preprocedural planning. METHODS: Patients undergoing TAVR at the University of Colorado were split into a training cohort for the development of a predictive model, and a testing cohort for model validation. Stepwise and binary logistic regressions were performed on the training cohort to produce a predictive model. Beta coefficients from the binary logistic regression were used to create a simple scoring system for predicting the need for PPM implantation. Scores were then applied to the validation cohort to assess predictive accuracy. RESULTS: Patients undergoing TAVR from 2013 to 2019 were analyzed: with 483 included in the training cohort and 123 included in the validation cohort. The need for a pacemaker was associated with five preprocedure variables in the training cohort: PR interval > 200 ms, Right bundle branch block, valve-In-valve procedure, prior Myocardial infarction, and self-Expandable valve. The PRIME score was developed using these clinical features, and was highly accurate for predicting PPM in both the training and model validation cohorts (area under the curve 0.804 and 0.830 in the model training and validation cohorts, respectively). CONCLUSIONS: The PRIME score is a simple and accurate preprocedural tool for predicting the need for PPM implantation after TAVR.


Assuntos
Estenose da Valva Aórtica , Marca-Passo Artificial , Substituição da Valva Aórtica Transcateter , Humanos , Substituição da Valva Aórtica Transcateter/efeitos adversos , Estimulação Cardíaca Artificial , Resultado do Tratamento , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/cirurgia , Fatores de Risco , Estudos Retrospectivos , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia
8.
Mol Cell Proteomics ; 20: 100111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34126241

RESUMO

Major histocompatibility complex (MHC)-bound peptides that originate from tumor-specific genetic alterations, known as neoantigens, are an important class of anticancer therapeutic targets. Accurately predicting peptide presentation by MHC complexes is a key aspect of discovering therapeutically relevant neoantigens. Technological improvements in mass-spectrometry-based immunopeptidomics and advanced modeling techniques have vastly improved MHC presentation prediction over the past two decades. However, improvement in the sensitivity and specificity of prediction algorithms is needed for clinical applications such as the development of personalized cancer vaccines, the discovery of biomarkers for response to checkpoint blockade, and the quantification of autoimmune risk in gene therapies. Toward this end, we generated allele-specific immunopeptidomics data using 25 monoallelic cell lines and created Systematic HLA Epitope Ranking Pan Algorithm (SHERPA), a pan-allelic MHC-peptide algorithm for predicting MHC-peptide binding and presentation. In contrast to previously published large-scale monoallelic data, we used an HLA-null K562 parental cell line and a stable transfection of HLA alleles to better emulate native presentation. Our dataset includes five previously unprofiled alleles that expand MHC-binding pocket diversity in the training data and extend allelic coverage in under profiled populations. To improve generalizability, SHERPA systematically integrates 128 monoallelic and 384 multiallelic samples with publicly available immunoproteomics data and binding assay data. Using this dataset, we developed two features that empirically estimate the propensities of genes and specific regions within gene bodies to engender immunopeptides to represent antigen processing. Using a composite model constructed with gradient boosting decision trees, multiallelic deconvolution, and 2.15 million peptides encompassing 167 alleles, we achieved a 1.44-fold improvement of positive predictive value compared with existing tools when evaluated on independent monoallelic datasets and a 1.15-fold improvement when evaluating on tumor samples. With a high degree of accuracy, SHERPA has the potential to enable precision neoantigen discovery for future clinical applications.


Assuntos
Antígenos de Neoplasias , Complexo Principal de Histocompatibilidade , Modelos Teóricos , Peptídeos , Algoritmos , Apresentação de Antígeno , Linhagem Celular , Humanos , Proteoma , Transcriptoma
9.
Hum Factors ; 65(6): 1130-1141, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35927966

RESUMO

OBJECTIVE: This project quantifies operationally relevant measures of flight performance and workload in a high-fidelity long-duration spaceflight analog, longitudinally across mission duration, using a portable simulation platform. BACKGROUND: Real-time performance measures allow for the objective assessment of task performance and the timely identification of performance degradations. METHODS: Measures of flight performance on a piloted lunar lander task were collected on 32 total crewmembers across 8 simulated space missions of 45 days each (623 total sessions). RESULTS: Mission duration demonstrated a significant effect on measures of flight performance across all campaigns. Flight measures showed a general pattern of peaking in accuracy during the middle-late quartiles of overall mission time, then degrading again towards baseline. On the workload measure, however, a general linear decrease in workload consistent with progressive task learning was observed in both campaigns. CONCLUSION: This investigation demonstrated the disruptive effect of time in mission on some, but not all, aspects of task performance. While mission interval differentially impacted measures of flight accuracy, workload, by contrast, seemed to steadily decrease with in-mission time. APPLICATION: While more work is needed, the observed discrepancy between progression of flight performance and workload assessment highlights the importance of sensitive and specific measurement tools for the tracking of distinct performance metrics.


Assuntos
Voo Espacial , Humanos , Análise e Desempenho de Tarefas , Carga de Trabalho , Fatores de Tempo
10.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108460

RESUMO

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impacted healthcare, the workforce, and worldwide socioeconomics. Multi-dose mono- or bivalent mRNA vaccine regimens have shown high efficacy in protection against SARS-CoV-2 and its emerging variants with varying degrees of efficacy. Amino acid changes, primarily in the receptor-binding domain (RBD), result in selection for viral infectivity, disease severity, and immune evasion. Therefore, many studies have centered around neutralizing antibodies that target the RBD and their generation achieved through infection or vaccination. Here, we conducted a unique longitudinal study, analyzing the effects of a three-dose mRNA vaccine regimen exclusively using the monovalent BNT162b2 (Pfizer/BioNTech) vaccine, systematically administered to nine previously uninfected (naïve) individuals. We compare changes in humoral antibody responses across the entire SARS-CoV-2 spike glycoprotein (S) using a high-throughput phage display technique (VirScan). Our data demonstrate that two doses of vaccination alone can achieve the broadest and highest magnitudes of anti-S response. Moreover, we present evidence of novel highly boosted non-RBD epitopes that strongly correlate with neutralization and recapitulate independent findings. These vaccine-boosted epitopes could facilitate multi-valent vaccine development and drug discovery.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Formação de Anticorpos , Vacina BNT162 , Estudos Longitudinais , Pandemias , Vacinação , Anticorpos Neutralizantes , Epitopos , Anticorpos Antivirais
11.
Artigo em Inglês | MEDLINE | ID: mdl-37747678

RESUMO

It is a common practice in forensic casework to use presumptive tests for blood stains before DNA extraction and testing. Stains are usually swabbed and then the swabs are sent for analysis. The Kastle-Meyer (KM) and Leucomalachite green (LMG) presumptive tests for blood are widely used, and their sensitivities have been thoroughly tested in the literature in solution and directly on stains, but not on swabbed stains to mimic casework. In this study, the sensitivity of the KM and LMG tests was tested on eight blood dilutions on cotton fabric and ceramic tile that were stained and subsequently swabbed. Both tests showed sensitivity up to 1:5000, which is slightly lower than reported values in solution or directly on stain but still highly effective in most cases. Stains were also cleaned with common agents, then swabbed and re-tested. Stained ceramic tiles cleaned with soap/water or bleach gave mixed positive and negative results for the 1:10 dilution, presumably due to variance in how thoroughly each investigator cleaned the stain, and other dilutions were undetectable after cleaning. The LMG test gave false positives for bleach cleaned stains, due to reagent reactivity with bleach. Surprisingly, blood was detectible up to the 1:100 dilution with both tests on stained cotton fabric that was cleaned in a washing machine with detergent and dried. Ultimately the KM and LMG presumptive tests remain effective tools for swabbed blood stains, and their practicality for cleaned stains is dependent on material containing the stain, cleaning agent and processing.

12.
J Virol ; 95(13): e0000321, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853962

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an important oncogenic virus previously shown to be neurotropic, but studies on neuronal cell infection and pathogenesis are still very limited. Here, we characterized the effects of KSHV infection on neuronal SH-SY5Y cells by the recombinant virus rKSHV.219, which expresses both green fluorescent protein (GFP) and red fluorescent protein (RFP) to reflect the latent and lytic phases of infection. We demonstrated that infected cells have a higher growth rate and that KSHV infection can be sustained. Interestingly, the infected cells can transition spontaneously back and forth between lytic and latent phases of infection, producing progeny viruses but without any adverse effects on cell growth. In addition, transcriptome analysis of viral and cellular genes in latent and lytic cells showed that unlike other infected cell lines, the latently infected cells expressed both latent and most, but not all, of the lytic genes required for infectious virion production. The viral genes uniquely expressed by the lytic cells were mainly involved in the early steps of virus binding. Some of the cellular genes that were deregulated in both latently and lytically infected cells are involved in cell adhesion, cell signal pathways, and tumorigenesis. The downregulated cellular CCDN1, PAX5, and NFASC and upregulated CTGF, BMP4, YAP1, LEF1, and HLA-DRB1 genes were found to be associated with cell adhesion molecules (CAMs), hippo signaling, and cancer. These deregulated genes may be involved in creating an environment that is unique in neuronal cells to sustain cell growth upon KSHV infection and not observed in other infected cell types. IMPORTANCE Our study has provided evidence that neuronal SH-SY5Y cells displayed unique cellular responses upon KSHV infection. Unlike other infected cells, this neuronal cell line displayed a higher growth rate upon infection and can spontaneously transition back and forth between latent and lytic phases of infection. Unlike other latently infected cells, a number of lytic genes were also expressed in the latent phase of infection in addition to the established latent viral genes. They may play a role in deregulating a number of host genes that are involved in cell signaling and tumorigenesis in order to sustain the infection and growth advantages for the cells. Our study has provided novel insights into KSHV infection of neuronal cells and a potential new model for further studies to explore the underlying mechanism in viral and host interactions for neuronal cells and the association of KSHV with neuronal diseases.


Assuntos
Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 8/metabolismo , Neurônios/metabolismo , Ativação Viral/fisiologia , Latência Viral/fisiologia , Animais , Adesão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Chlorocebus aethiops , Células HEK293 , Infecções por Herpesviridae/patologia , Humanos , Infecção Latente/virologia , Neuroblastoma/metabolismo , Neuroblastoma/virologia , Neurônios/virologia , Células Vero , Replicação Viral/fisiologia
13.
PLoS Pathog ; 16(7): e1008681, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32706839

RESUMO

In sub-Saharan Africa, endemic Kaposi's sarcoma (EnKS) is still prevalent despite high incidence of epidemic Kaposi's sarcoma (EpKS) resulting from the on-going HIV-1 epidemic. While KSHV is clearly the etiologic agent of KS, the mechanisms underlying KS development are not fully understood. For example, HIV-1 co-infection and concomitant immune dysfunction have been associated with EpKS development. However, the direct or indirect role(s) of HIV-1, and therefore of immune suppression, in EpKS remains unclear. How, or whether, EpKS is mechanistically distinct from EnKS is unknown. Thus, the absence of HIV-1 co-infection in EnKS provides a unique control for investigating and deciphering whether HIV-1 plays a direct or indirect role in the EpKS tumor microenvironment. We hypothesized that HIV-1 co-infection would induce transcriptome changes that differentiate EpKS from EnKS, thereby defining the direct intra-tumor role of HIV-1 in KS. Comparison of ART-treated and -naïve patients would further define the impact of ART on the KS transcriptome. We utilized RNA-seq followed by multiparameter bioinformatics analysis to compare transcriptomes from KS lesions to uninvolved control skin. We provide the first transcriptomic comparison of EpKS versus EnKS, ART-treated vs-naïve EpKS and male vs female EpKS to define the roles of HIV-1 co-infection, the impact of ART, and gender on KS gene expression profiles. Our findings suggest that ART-use and gender have minimal impact on transcriptome profiles of KS lesions. Gene expression profiles strongly correlated between EpKS and EnKS patients (Spearman r = 0.83, p<10-10). A subset of genes involved in tumorigenesis and inflammation/immune responses showed higher magnitude, but not unique dysregulation in EnKS compared to EpKS. While gender and ART had no detectable contribution, the trend toward higher magnitude of gene dysregulation in EnKS coupled with the absence of HIV-1 transcripts in EpKS may suggest an indirect or systemic effect of HIV-1 to promote KS tumorigenesis.


Assuntos
Coinfecção/genética , HIV-1 , Herpesvirus Humano 8 , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virologia , Adulto , Feminino , Perfilação da Expressão Gênica , Infecções por HIV/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
J Neurovirol ; 28(4-6): 527-536, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36198990

RESUMO

Whether the human brain is a robust reservoir for HIV-1 subtype C has yet to be established. We aimed to determine whether HIV-1 subtype C infection can be detected in the brain tissue of a viremic individual at post-mortem and whether the viral burden was differential between different brain regions. This study reports a 38-year-old Zambian female decedent with severe wasting who was on Atripla for antiretroviral therapy. The cause of death was determined to be HIV/AIDS end-stage disease. The QuantStudio 3 Real-Time PCR System analyzed formalin-fixed paraffin-embedded tissue DNA from a systematic sampling of the entire left-brain hemisphere. Plasma and cerebral spinal fluid HIV-1 RNA loads were 576,123 and 14,962 copies/mL, respectively. The lymph node DNA viral load was 2316 copies per 106 cells. Two hundred and six (96.3%) tissue blocks had amplifiable DNA. HIV-1 viral DNA was detected in 35.9% of the blocks, the highest in the basal ganglia (66.7%) and the frontal lobe (46%). Overall, HIV detection was random, with low viral copies detected by quantitative polymerase chain reaction (qPCR); the lowest was observed in the occipital (median, IQR, range) 0.0 [0.0-0.0], 0.0-31.3, and the highest in the basal ganglia (mean ± SD, range, 125.1149.5, 0.0-350.0). Significant differences in HIV-1 DNA distribution were observed between the occipital versus parietal (p = 0.049), occipital versus frontal (p = 0.019), occipital versus basal ganglia (p = 0.005), cerebellum versus frontal (p = 0.021), cerebellum versus basal ganglia (p = 0.007), and temporal versus frontal (p = 0.034).


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , HIV-1 , Adulto , Feminino , Humanos , Encéfalo , Infecções por HIV/genética , HIV-1/genética , Reação em Cadeia da Polimerase em Tempo Real , Carga Viral
15.
J Immunol ; 205(10): 2742-2749, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32998986

RESUMO

Although the immune response is likely to play a pivotal role in controlling Kaposi sarcoma (KS)-associated herpesvirus (KSHV) and preventing disease development, the exact factors responsible for that control remain ill defined. T cell responses are weak and variable, and neutralizing Abs are more frequently detected in individuals with KS. This suggests a potential role for nonneutralizing Abs, which to date have been largely uninvestigated. Ab-dependent cell cytotoxicity (ADCC) is a common effector function for nonneutralizing Abs and is known to play a protective role in other herpesvirus infections; yet, ADCC has never been investigated in the context of KSHV infection. In this study, we provide, to our knowledge, the first evidence that anti-KSHV Abs are capable of mediating ADCC responses against infected human cells undergoing lytic reactivation. ADCC activity significantly higher than seronegative controls was detected in 24 of 68 KSHV-seropositive individuals tested. However, ADCC responses were not associated with KS development or progression. ADCC activity was also found to be independent of HIV status, sex, age, KSHV Ab titer, and KSHV-neutralizing activity. Nevertheless, additional investigations into effector cell function between KS and asymptomatic individuals are needed to determine whether ADCC has a role in preventing KS.


Assuntos
Anticorpos Antivirais/sangue , Citotoxicidade Celular Dependente de Anticorpos , Herpesvirus Humano 8/imunologia , Infecção Latente/imunologia , Sarcoma de Kaposi/imunologia , Animais , Anticorpos Antivirais/imunologia , Infecções Assintomáticas , Linhagem Celular , Progressão da Doença , Feminino , Seguimentos , Humanos , Infecção Latente/sangue , Infecção Latente/virologia , Estudos Longitudinais , Masculino , Camundongos , Sarcoma de Kaposi/sangue , Sarcoma de Kaposi/virologia
16.
Alcohol Alcohol ; 57(4): 445-451, 2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34541599

RESUMO

AIMS: Magnetic resonance imaging (MRI) studies have identified structural and functional differences in salience network nodes of individuals with alcohol use disorders (AUDs) after chronic exposure to alcohol. However, no studies have investigated cerebral blood flow (CBF) in nontreatment-seeking (NTS) individuals with AUD. METHODS: In this work, we sought to quantify putative CBF deficits in NTS individuals relative to social drinking (SD) controls and determine if CBF in the salience network is associated with AUD severity. Fifteen NTS (36.5 ± 11.2 years old, 30.0 ± 22.7 drinks/week) and 22 SD (35.6 ± 11.9 years old, 9.1 ± 5.7 drinks/week) underwent pseudocontinuous arterial spin labeling MRI. RESULTS: Compared with social drinkers, NTS individuals had significantly lower CBF in the right and left dorsal anterior insula, and the left ventral anterior and posterior insula. The Alcohol Use Disorder Identification Test (AUDIT) score showed a significant negative relationship with CBF in the bilateral caudal anterior cingulate cortex. In addition, a significant negative correlation was present between number of standard drinks consumed per week and the left frontal opercular CBF. CONCLUSION: These results provide evidence that insular CBF is negatively associated with heavy drinking, and that severity of alcohol use is related to CBF deficits in key nodes of the salience network. Longitudinal data are needed to understand if disruptions of CBF in the insula and the salience network are a predisposition for or a consequence of chronic AUD.


Assuntos
Alcoolismo , Adulto , Consumo de Bebidas Alcoólicas , Encéfalo/patologia , Circulação Cerebrovascular/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Adulto Jovem
17.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1131-L1133, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34786988

RESUMO

As earthlings, we take the oxygen in the air that we breathe for granted. Few people realize that this easy access to oxygen makes us unique in the whole universe. Nowhere else in our planetary system or in distant stars has stable oxygen ever been detected. However, the present plentiful supply of oxygen in our atmosphere was not always there. Long after the Earth was formed some 4.5 billion years ago, the Po2 in the atmosphere was near zero, and it remained so for millions of years. But about 2 billion years ago, the Po2 dramatically increased to as high as 200 mmHg during the Great Oxygen Event, due to the activity of microorganisms, the cyanobacteria. Subsequently, the oxygen level fell to the intermediate values that we have today. Here, we also look to the future, for example, the next 50 years. This period will be special because it will include the beginnings of human space exploration, initially to the Moon and Mars. Neither of these has atmospheric oxygen. Nevertheless, plans to visit and live on both of these are developing rapidly. We consider the fascinating problems of how to ensure that sufficient oxygen will be available for the groups of people. Although it is interesting to discuss these issues now, we can expect that major advances will be made in the next few years.


Assuntos
Atmosfera , Evolução Biológica , Planeta Terra , Oxigênio/análise , Oxigênio/metabolismo , Humanos
18.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L583-L589, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33594915

RESUMO

Alexander von Humboldt (1769-1859) was one of the most distinguished German scientists of the late 18th and early 19th centuries. His fame came chiefly from his extensive explorations in South America and his eminence as a plant naturalist. He attempted to climb the inactive volcano Chimborazo in Ecuador, which was thought to be the highest mountain in the world at the time, and he reached an altitude of about 5,543 m, which was a record height for humans. During the climb, he had typical symptoms of acute mountain sickness, which he correctly attributed to the low level of oxygen, and he was apparently the first person to make this connection. His ability as a naturalist enabled him to recognize the effect of high altitude on the distribution of plants, and by comparing his observations on Chimborazo with those in the European Alps and elsewhere, he inferred that the deleterious effects of high altitude were universal. During his return trip to Europe, he called on President Thomas Jefferson in Washington, where he was given a warm reception, and discussed conservation issues. He then returned to Paris, where he produced 29 volumes over a period of 31 years describing his travels. Here the effects of high altitude on the distribution of plants compared with animals are briefly reviewed. Following Humboldt's death in 1859, there was extensive coverage of his contributions, but curiously, his fame has diminished over the years, and inexplicably, he now has a lower profile in North America.


Assuntos
Doença da Altitude/história , Altitude , Expedições/história , Disciplinas das Ciências Naturais/história , Fenômenos Fisiológicos Vegetais , Animais , Pessoas Famosas , Alemanha , História do Século XIX , História do Século XX , Humanos , Oxigênio/metabolismo
19.
Hum Brain Mapp ; 42(11): 3500-3516, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949732

RESUMO

Functional connectivity, as estimated using resting state functional MRI, has shown potential in bridging the gap between pathophysiology and cognition. However, clinical use of functional connectivity biomarkers is impeded by unreliable estimates of individual functional connectomes and lack of generalizability of models predicting cognitive outcomes from connectivity. To address these issues, we combine the frameworks of connectome predictive modeling and differential identifiability. Using the combined framework, we show that enhancing the individual fingerprint of resting state functional connectomes leads to robust identification of functional networks associated to cognitive outcomes and also improves prediction of cognitive outcomes from functional connectomes. Using a comprehensive spectrum of cognitive outcomes associated to Alzheimer's disease (AD), we identify and characterize functional networks associated to specific cognitive deficits exhibited in AD. This combined framework is an important step in making individual level predictions of cognition from resting state functional connectomes and in understanding the relationship between cognition and connectivity.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Conectoma/métodos , Rede Nervosa/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiopatologia
20.
J Phycol ; 57(3): 1035-1044, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33657649

RESUMO

The advent of high-throughput sequencing (HTS) has allowed for the use of large numbers of coding regions to produce robust phylogenies. These phylogenies have been used to highlight relationships at ancient diversifications (subphyla, class) and highlight the evolution of plastid genome structure. The Erythropeltales are an order in the Compsopogonophyceae, a group with unusual plastid genomes but with low taxon sampling. We use HTS to produce near complete plastid genomes of all genera, and multiple species within some genera, to produce robust phylogenies to investigate character evolution, dating of divergence in the group, and plastid organization, including intron patterns. Our results produce a fully supported phylogeny of the genera in the Erythropeltales and suggest that morphologies (upright versus crustose) have evolved multiple times. Our dated phylogeny also indicates that the order is very old (~800 Ma), with diversification occurring after the ice ages of the Cryogenian period (750-635 Ma). Plastid gene order is congruent with phylogenetic relationships and suggests that genome architecture does not change often. Our data also highlight the abundance of introns in the plastid genomes of this order. We also produce a nearly complete plastid genome of Tsunamia transpacifica (Stylonematophyceae) to add to the taxon sampling of genomes of this class. The use of plastid genomes clearly produces robust phylogenetic relationships that can be used to infer evolutionary events, and increased taxon sampling, especially in less well-known red algal groups, will provide additional insights into their evolution.


Assuntos
Evolução Molecular , Rodófitas , Íntrons , Filogenia , Plastídeos/genética , Rodófitas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA