Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 59(5): 2758-2764, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32058704

RESUMO

Magnesium-based transition-metal hydrides are attractive hydrogen energy materials because of their relatively high gravimetric and volumetric hydrogen storage capacities combined with low material costs. However, most of them are too stable to release the hydrogen under moderate conditions. Here we synthesize the hydride of Mg2FexSi1-x, which consists of Mg2FeH6 and Mg2Si with the same cubic structure. For silicon-rich hydrides (x < 0.5), mostly the Mg2Si phase is observed by X-ray diffraction, and Mössbauer spectroscopy indicates the formation of an octahedral FeH6 unit. Transmission electron microscopy measurements indicate that Mg2FeH6 domains are nanometer-sized and embedded in a Mg2Si matrix. This synthesized metallographic structure leads to distortion of the Mg2FeH6 lattice, resulting in thermal destabilization. Our results indicate that nanometer-sized magnesium-based transition-metal hydrides can be formed into a matrix-forced organization induced by the hydrogenation of nonequilibrium Mg-Fe-Si composites. In this way, the thermodynamics of hydrogen absorption and desorption can be tuned, which allows for the development of lightweight and inexpensive hydrogen storage materials.

2.
Angew Chem Int Ed Engl ; 53(45): 12081-5, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25244324

RESUMO

The catalytic properties of Pd alloy thin films are enhanced by a thin sputtered PTFE coating, resulting in profound improvements in hydrogen adsorption and desorption in Pd-based and Pd-catalyzed hydrogen sensors and hydrogen storage materials. The remarkably enhanced catalytic performance is attributed to chemical modifications of the catalyst surface by the sputtered PTFE leading to a possible change in the binding strength of the intermediate species involved in the hydrogen sorption process.

3.
Opt Express ; 21(1): 382-90, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23388931

RESUMO

We report for the first time on the experimental response of a Surface Plasmon Resonance fiber optic sensor based on wavelength modulation for hydrogen sensing. This approach of measuring the hydrogen concentration makes the sensor insensitive to intensity fluctuations. The intrinsic fiber sensor developed provides remote sensing and enables the possibility of multi-points sensing. The sensor consists of a multilayer of 35 nm Au/180 nm SiO2/Pd deposited on a step- index multimode fiber core. The sensitivity and selectivity of the sensor are optimal at a Pd thickness of 3.75 nm. The sensor is sensitive to a hydrogen concentration ranging between 0.5 and 4% H2 in Ar, with a response time less than 15 s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA