Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 35(31): 10068-10078, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30827115

RESUMO

Ultrasound contrast agents consist of stabilized microbubbles. We are developing a surfactant-stabilized microbubble platform with a shell composed of Span 60 (Sorbitan monostearate) and an emulsifying agent, water-soluble vitamin E (α-tocopheryl poly(ethylene glycol) succinate, abbreviated as TPGS), named SE61. The microbubbles act both as an imaging agent and a vehicle for delivering oxygen to hypoxic areas in tumors. For clinical use, it is important that a platform be stable under storage at room temperature. To accomplish this, a majority of biologicals are prepared as freeze-dried powders, which also eliminates the necessity of a cold chain. The interfaces among the surfactants, gas, and liquids are subject to disruption in both the freezing and drying phases. Using thermocouples to monitor temperature profiles, differential scanning calorimetry to determine the phase transitions, and acoustic properties to gauge the degree of microbubble disruption, the effects of the freezing rate and the addition of different concentrations of lyoprotectants were determined. Slower cooling rates achieved by freezing the samples in a -20 °C bath were found to be reproducible and produce contrast agents with acceptable acoustical properties. The ionic strength of the solutions and the concentration of the lyoprotectant determined the glass-transition temperature (Tg') of the frozen sample, which determines at what temperature samples can be dried without collapse. Crucially, we found that the shelf stability of surfactant-shelled oxygen microbubbles can be enhanced by increasing the lyoprotectant (glucose) concentration from 1.8 to 5.0% (w/v), which prevents the melt temperature (Tm) of the TPGS phase from rising above room temperature. The increase in glucose concentration results in a lowering of Tm of the emulsifying agent, preventing a phase change in the liquid-crystalline phase and allowing for more stable bubbles. We believe that preventing this phase change is necessary to producing stabilized freeze-dried microbubbles.


Assuntos
Meios de Contraste/química , Portadores de Fármacos/química , Liofilização , Microbolhas , Oxigênio/química , Estabilidade de Medicamentos , Emulsificantes/química , Hexoses/química , Transição de Fase , Vitamina E/química
2.
J Ultrasound Med ; 38(12): 3221-3228, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31124171

RESUMO

OBJECTIVES: Hypoxic cancer cells have been shown to be more resistant to radiation therapy than normoxic cells. Hence, this study investigated whether ultrasound (US)-induced rupture of oxygen-carrying microbubbles (MBs) would enhance the response of breast cancer metastases to radiation. METHODS: Nude mice (n = 15) received stereotactic injections of brain-seeking MDA-MB-231 breast cancer cells into the right hemisphere. Animals were randomly assigned into 1 of 5 treatment groups: no intervention, 10 Gy radiation using a small-animal radiation research platform, nitrogen-carrying MBs combined with US-mediated MB rupture immediately before 10 Gy radiation, oxygen-carrying MBs immediately before 10 Gy radiation, and oxygen-carrying MBs with US-mediated MB rupture immediately before 10 Gy radiation. Tumor progression was monitored with 3-dimensional US, and overall survival was noted. RESULTS: All groups except those treated with oxygen-carrying MB rupture and radiation had continued rapid tumor growth after treatment. Tumors treated with radiation alone showed a mean increase in volume ± SD of 337% ± 214% during the week after treatment. Tumors treated with oxygen-carrying MBs and radiation without MB rupture showed an increase in volume of 383% ± 226%. Tumors treated with radiation immediately after rupture of oxygen-carrying MBs showed an increase in volume of only 41% ± 1% (P = 0.045), and this group also showed a 1 week increase in survival time. CONCLUSIONS: Adding US-ruptured oxygen-carrying MBs to radiation therapy appears to delay tumor progression and improve survival in a murine model of metastatic breast cancer.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Portadores de Fármacos , Microbolhas , Oxigênio/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Nus , Distribuição Aleatória , Ultrassonografia
3.
Mol Pharm ; 14(10): 3448-3456, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28814080

RESUMO

Many cancer therapy regimes still rely heavily on the systemic administration of toxic chemotherapeutic agents. Ultrasound contrast agents consisting of microbubbles (MBs) have emerged as a drug delivery vehicle to overcome the challenges associated with systemic chemotherapy. Here, we describe the development of non-immunogenic, functionalized polylactic acid (PLA) MBs for use in targeted cancer therapy. Our previous studies have shown that the balance between acoustic behavior and improved immune avoidance was scalable and successful to different degrees with two different PEGylation methods and was best achieved using incorporation of PEG-PLA at 5 wt % and for a LipidPEG at 1 wt %. Capitalizing on this, we now attach a targeting ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which selectively induces tumor cell death upon binding to cancer cell-specific surface receptors, initiating a transmembrane apoptosis signal. Additionally, the functionalized MBs were designed to coencapsulate doxorubicin (Dox) that can be released from the polymer shell in response to ultrasound focused at the tumor site, shielding healthy tissues from toxicity while increasing the potency and efficiency of treatment to the tumor tissue. Ligation of TRAIL reduced the encapsulation efficiency for Dox compared to those of their non-ligated counterparts (p < 0.0001) by approximately 34% for 100% PLA, 23% for 5 wt % PEG-PLA, and 30% for the 1 wt % LipidPEG platform. All platforms exhibited a burst effect (<7%, p < 0.0001), and sustained release lasted for over 150 h. This work has resulted in a choice of effective ultrasound-triggered, non-immunogenic, targeted drug delivery agents for potential use in cancer therapy. These platforms have many advantages over the systemic administration of chemotherapeutic drugs and represent a promising treatment to better serve the population with solid cancerous tumors as a whole.


Assuntos
Antineoplásicos/administração & dosagem , Meios de Contraste/química , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Microbolhas , Neoplasias/tratamento farmacológico , Química Farmacêutica , Preparações de Ação Retardada/administração & dosagem , Composição de Medicamentos/métodos , Desenho de Fármacos , Humanos , Poliésteres/química , Polietilenoglicóis/química , Ligante Indutor de Apoptose Relacionado a TNF/química , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Ultrassonografia
4.
Langmuir ; 31(43): 11858-67, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26446176

RESUMO

Ultrasound contrast agents are typically microbubbles (MB) with a gas core that is stabilized by a shell made of lipids, proteins, or polymers. The high impedance mismatch between the gas core and an aqueous environment produces strong contrast in ultrasound (US). Poly(lactic acid) (PLA) MB, previously developed in our laboratory, have been shown to be highly echogenic both in vitro and in vivo. Combining US with other imaging modalities such as fluorescence, magnetic resonance imaging (MRI), or computerized tomography (CT) could improve the accuracy of many US applications and provide more comprehensive diagnostic information. Furthermore, our MB have the capacity to house a drug in the PLA shell and create drug-loaded nanoparticles in situ when passing through an ultrasound beam. To create multimodal contrast agents, we hypothesized that the polymer shell of our PLA MB platform could accommodate additional payloads. In this study, we therefore modified our current MB by encapsulating nanoparticles including aqueous or organic quantum dots (QD), magnetic iron oxide nanoparticles (MNP), or gold nanoparticles (AuNP) to create bimodality platforms in a manner that minimally compromised the performance of each individual imaging technique.


Assuntos
Meios de Contraste , Imagem Multimodal , Nanopartículas/química , Polímeros/química , Animais , Linhagem Celular , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pontos Quânticos , Difração de Raios X
5.
Ultrasound Med Biol ; 50(6): 888-897, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38519360

RESUMO

OBJECTIVE: We believe our poly(lactic acid) (PLA) microbubbles are well suited for therapeutic delivery to spinal cord injury (SCI) using ultrasound-triggered bursting. We investigated the feasibility of clinical ultrasound bursting in situ, the optimal bursting parameters in vitro and the loading and release of a model bio-active DNA. METHODS: Microbubbles were tested using clinical ultrasound in a rat cadaver SCI model. Burst pressure thresholds were determined using the change in enhancement after ultrasound exposure. Resonance frequency, acoustic enhancement, sizing and morphology were evaluated by comparing two microbubble porogens, ammonium carbonate and ammonium carbamate. Oligonucleotides were loaded into the shell and released using the found optimized ultrasound bursting parameters. RESULTS: In situ imaging and bursting were successful. In vitro bursting thresholds using frequencies 1, 2.25 and 5 MHz were identified between peak negative pressures 0.2 and 0.5 MPa, believed to be safe for spinal cord. The pressure threshold decreased with decreasing frequencies. PLA bursting was optimized near the resonance frequency of 2.5 to 3.0 MHz using 2.25 MHz and not at lower frequencies. PLA microbubbles, initially with a mean size of approximately 2 µm, remained in one piece, collapsed to between 0.5 and 1 µm and did not fragment. Significantly more oligonucleotide was released after ultrasound bursting of loaded microbubbles. Microbubble-sized debris was detected when using ammonium carbamate, leading to inaccurate microbubble concentration measurements. CONCLUSION: PLA microbubbles made with ammonium carbonate and burst at appropriate parameters have the potential to safely improve intrathecal therapeutic delivery to SCI using targeted ultrasound.


Assuntos
Microbolhas , Traumatismos da Medula Espinal , Animais , Ratos , Traumatismos da Medula Espinal/diagnóstico por imagem , Microbolhas/uso terapêutico , Polímeros , Modelos Animais de Doenças , Estudos de Viabilidade , Poliésteres , Sistemas de Liberação de Medicamentos/métodos
6.
Ultrasound Med Biol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876912

RESUMO

OBJECTIVE: Both microbubble ultrasound contrast agents and acoustic phase change droplets (APCD) have been explored in hepatocellular carcinoma (HCC). This work aimed to evaluate changes to the HCC microenvironment following either microbubble or APCD destruction in a syngeneic pre-clinical model. METHODS: Mouse RIL-175 HCC tumors were grown in the right flank of 64 immunocompetent mice. Pre-treatment, photoacoustic volumetric tumor oxygenation, and power Doppler measurements were obtained using a Vevo 3100 system (VisualSonics, Toronto, Canada). The experimental groups received a 0.1 mL bolus injection of either Definity ultrasound contrast agent (Lantheus Medical Imaging) or APCD fabricated by condensing Definity. Following injection, ultrasound destruction was performed using flash-replenishment sequences on a Sequoia with a 10L4 probe (Siemens) for the duration of enhancement. Tumor oxygenation and power Doppler measurements were then repeated immediately post-ultrasound treatment. Twenty-four hours post-treatment, animals were euthanized, and tumors were harvested and stained for CD31, Cleaved Caspase 3 and CD45. RESULTS: Imaging biomarkers demonstrated a significant reduction in percent vascularity following either microbubble or APCD destruction in the tumor microenvironment ( p < 0.022) but no significant changes in tumor oxygenation (p = 0.12). Similarly, immunohistochemistry data demonstrated a significant decrease in CD31 expression (p < 0.042) and an increase in apoptosis (p < 0.014) in tumors treated with destroyed microbubbles or APCD relative to controls. Finally, a significant increase in CD45 expression was observed in tumors treated with APCD (p = 0.046), indicating an increase in tumor immune response. CONCLUSION: Ultrasound-triggered destruction of both microbubbles and APCD reduces vascularity, increases apoptosis, and may also increase immune response in this HCC model.

7.
Pharmaceutics ; 15(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111787

RESUMO

Tumor hypoxia (oxygen deficiency) is a major contributor to radiotherapy resistance. Ultrasound-sensitive microbubbles containing oxygen have been explored as a mechanism for overcoming tumor hypoxia locally prior to radiotherapy. Previously, our group demonstrated the ability to encapsulate and deliver a pharmacological inhibitor of tumor mitochondrial respiration (lonidamine (LND)), which resulted in ultrasound-sensitive microbubbles loaded with O2 and LND providing prolonged oxygenation relative to oxygenated microbubbles alone. This follow-up study aimed to evaluate the therapeutic response to radiation following the administration of oxygen microbubbles combined with tumor mitochondrial respiration inhibitors in a head and neck squamous cell carcinoma (HNSCC) tumor model. The influences of different radiation dose rates and treatment combinations were also explored. The results demonstrated that the co-delivery of O2 and LND successfully sensitized HNSCC tumors to radiation, and this was also enhanced with oral metformin, significantly slowing tumor growth relative to unsensitized controls (p < 0.01). Microbubble sensitization was also shown to improve overall animal survival. Importantly, effects were found to be radiation dose-rate-dependent, reflecting the transient nature of tumor oxygenation.

8.
Polymers (Basel) ; 14(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35458319

RESUMO

Co-delivery of cancer therapeutics improves efficacy and encourages synergy, but delivery faces challenges, including multidrug resistance and spatiotemporal distribution of therapeutics. To address these, we added paclitaxel to previously developed acoustically labile, oxygen-core, surfactant-stabilized microbubbles encapsulating lonidamine, with the aim of developing an agent containing both a therapeutic gas and two drugs acting in combination. Upon comparison of unloaded, single-loaded, and dual-loaded microbubbles, size (~1.7 µm) and yield (~2 × 109 microbubbles/mL) (~1.7) were not statistically different, nor were acoustic properties (maximum in vitro enhancements roughly 18 dB, in vitro enhancements roughly 18 dB). Both drugs encapsulated above required doses calculated for head and neck squamous cell carcinoma, the cancer of choice. Interestingly, paclitaxel encapsulation efficiency increased from 1.66% to 3.48% when lonidamine was included. During preparation, the combination of single drug-loaded micelles gave higher encapsulation (µg drug/g microbubbles) than micelles loaded with either drug alone (lonidamine, 104.85 ± 22.87 vs. 87.54 ± 16.41), paclitaxel (187.35 ± 8.38 vs. 136.51 ± 30.66). In vivo intravenous microbubbles produced prompt ultrasound enhancement within tumors lasting 3-5 min, indicating penetration into tumor vasculature. The ability to locally destroy the microbubble within the tumor vasculature was confirmed using a series of higher intensity ultrasound pulses. This ability to locally destroy microbubbles shows therapeutic promise that warrants further investigation.

9.
Int J Pharm ; 625: 122072, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35932933

RESUMO

Prior work has shown that microbubble-assisted delivery of oxygen improves tumor oxygenation and radiosensitivity, albeit over a limited duration. Lonidamine (LND) has been investigated because of its ability to stimulate glycolysis, lactate production, inhibit mitochondrial respiration, and inhibit oxygen consumption rates in tumors but suffers from poor bioavailability. The goal of this work was to characterize LND-loaded oxygen microbubbles and assess their ability to oxygenate a human head and neck squamous cell carcinoma (HNSCC) tumor model, while also assessing LND biodistribution. In tumors treated with surfactant-shelled microbubbles with oxygen core (SE61O2) and ultrasound, pO2 levels increased to a peak 19.5 ± 9.7 mmHg, 50 s after injection and returning to baseline after 120 s. In comparison, in tumors treated with SE61O2/LND and ultrasound, pO2 levels showed a peak increase of 29.0 ± 8.3 mmHg, which was achieved 70 s after injection returning to baseline after 300 s (p < 0.001). The co-delivery of O2andLNDvia SE61 also showed an improvement of LND biodistribution in both plasma and tumor tissues (p < 0.001). In summary, ultrasound-sensitive microbubbles loaded with O2 and LND provided prolonged oxygenation relative to oxygenated microbubbles alone, as well as provided an ability to locally deliver LND, making them more appropriate for clinical translation.


Assuntos
Microbolhas , Neoplasias , Humanos , Indazóis , Oxigênio , Distribuição Tecidual
10.
J Microencapsul ; 28(5): 353-62, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21736520

RESUMO

Transplantation of cells genetically modified to produce neurotrophins is a promising spinal cord repair strategy. Previously we showed that fibroblasts engineered to produce brain-derived neurotrophic factor (Fb/BDNF) microencapsulated in alginate survive, continue to grow and express bioactive BDNF. We here compared the effects of different alginate crosslinkers on dorsal root ganglia (DRG) neurite growth using alginate-encapsulated Fb/BDNF. Aqueous sodium alginate (±Fb/BDNF) was contacted with different calcium salts, and used as substrate for DRG growth. Length, number and orientation of neurites were measured. Chloride or carbonate salts promoted significantly more neurite growth than sulphate, with or without Fb/BDNF, although encapsulated Fb/BDNF stimulated significantly more neurite growth than cell-free. An Fb/BDNF-derived neurotrophin concentration gradient directionally guided DRG neurite growth. This positive effect of alginate-encapsulated Fb/BDNF on neurite growth/guidance shows promise for enhanced regeneration and guidance of axons towards a specific target in the injured spinal cord.


Assuntos
Alginatos/farmacologia , Composição de Medicamentos , Fibroblastos/metabolismo , Fatores de Crescimento Neural/administração & dosagem , Neuritos/efeitos dos fármacos , Regeneração da Medula Espinal , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Reagentes de Ligações Cruzadas , Gânglios Espinais , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Humanos , Fatores de Crescimento Neural/biossíntese , Fatores de Crescimento Neural/uso terapêutico , Regeneração Nervosa
11.
Ultrasound Med Biol ; 47(6): 1465-1474, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33653626

RESUMO

Radiation therapy (RT) causes DNA damage through ionization, leading to double-strand breaks. In addition, it generates reactive oxygen species (ROS), which are toxic to tumor cells and the vasculature. However, hypoxic regions in the tumor have been shown to not only decrease treatment response but also increase the likelihood of recurrence and metastasis. Ultrasound-sensitive micro-bubbles are emerging as a useful diagnostic and therapeutic tool within RT. Contrast-enhanced ultrasound (CEUS) has shown great promise in early prediction of tumor response to RT. Ultrasound-triggered micro-bubble cavitation has also been shown to induce bio-effects that can sensitize angiogenic tumor vessels to RT. Additionally, ultrasound can trigger the release of drugs from micro-bubble carriers via localized micro-bubble destruction. This approach has numerous applications in RT, including targeted oxygen delivery before radiotherapy. Furthermore, micro-bubbles can be used to locally create ROS without radiation. Sonodynamic therapy uses focused ultrasound and a sonosensitizer to selectively produce ROS in the tumor region and has been explored as a treatment option for cancer. This review summarizes emerging applications of ultrasound contrast agents in RT and ROS augmentation.


Assuntos
Meios de Contraste , Microbolhas , Neoplasias/radioterapia , Sistemas de Liberação de Medicamentos , Humanos , Radioterapia/métodos , Ultrassonografia
12.
Colloids Surf B Biointerfaces ; 208: 112049, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34454362

RESUMO

We have developed oxygen filled microbubbles, SE61O2, for localized, ultrasound-triggered oxygen delivery to hypoxic tumors prior to radiation therapy. Microbubbles, created by sonication, have a shell composed of D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) and sorbitan monostearate. Preliminary studies in mice with breast tumor xenographs showed that increases in oxygen partial pressure levels lasted less than 3 min, which is insufficient for most clinical applications. Hence, we investigated the potential of incorporating a hydrophobic antiglycolytic drug, modeled with Nile red. A new fabrication method was developed by first creating drug-loaded TPGS micelles. The resulting microbubbles had similar shell compositions, physical size, morphology, and acoustic properties as the original method. However, microbubble yield was more than doubled, resulting in twice the encapsulation efficiency. For the TPGS micelle method these include similar shell compositions (94.4 ± 0.6 % Montane 60), physical size post freeze-drying and reconstitution (1.57 ± 0.42 µm), morphology (spherical), and acoustic properties (maximum enhancement 19.92 ± 0.55 dB). However, microbubble yield was more than doubled, resulting in twice the encapsulation efficiency (up to 10.49 %). We propose that a nonideal mixture is formed when the surfactants are combined by the standard method, resulting in the formation of mixed micelles that are more stable, making microbubble creation more difficult during the sonication step.


Assuntos
Microbolhas , Tensoativos , Animais , Portadores de Fármacos , Camundongos , Micelas , Oxigênio , Polietilenoglicóis
13.
Acta Biomater ; 130: 385-394, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34082100

RESUMO

Ultrasound imaging presents many positive attributes, including safety, real-time imaging, universal accessibility, and cost. However, inherent difficulties in discrimination between soft tissues and tumors prompted development of stabilized microbubble contrast agents. This presents the opportunity to develop agents in which drug is entrapped in the microbubble shell. We describe preparation and characterization of theranostic poly(lactide) (PLA) and pegylated PLA (PEG-PLA) shelled microbubbles that entrap gemcitabine, a commonly used drug for pancreatic cancer (PDAC). Entrapping 6 wt% gemcitabine did not significantly affect drug activity, microbubble morphology, or ultrasound contrast activity compared with unmodified microbubbles. In vitro microbubble concentrations yielding ≥ 500nM entrapped gemcitabine were needed for complete cell death in MIA PaCa-2 PDAC drug sensitivity assays, compared with 62.5 nM free gemcitabine. In vivo administration of gemcitabine-loaded microbubbles to xenograft MIA PaCa-2 PDAC tumors in athymic mice was well tolerated and provided substantial tumoral image enhancement before and after destructive ultrasound pulses. However, no significant differences in tumor growth were observed among treatment groups, in keeping with the in vitro observation that much higher doses of gemcitabine are required to mirror free gemcitabine activity. STATEMENT OF SIGNIFICANCE: The preliminary results shown here are encouraging and support further investigation into increased gemcitabine loading. Encapsulation of gemcitabine within polylactic acid (PLA) microbubbles does not damage its activity towards pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) cells. Excellent imaging and evidence of penetration into the highly desmoplastic PDAC tumors is demonstrated. Microbubble destruction was confirmed in vivo, showing that elevated mechanical index shatters the microbubbles for enhanced delivery. The potential to slow PDAC growth in vivo is shown, but higher gemcitabine concentrations are required. Current efforts are directed at increasing drug loading by inclusion of drug-carrying nanoparticles for effective in vivo treatment.


Assuntos
Microbolhas , Neoplasias Pancreáticas , Animais , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Camundongos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Ultrassonografia , Gencitabina
14.
Mol Imaging ; 9(2): 96-107, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20236607

RESUMO

Tumor imaging by ultrasound is greatly enhanced by the use of ultrasound contrast agents (UCAs), stabilized, gas-filled bodies. They are generally less than 7 microm to pass freely through the capillary bed. Development of a nano-sized agent would enable them to extravasate through the leaky pores of angiogenic vessels. We describe the development of an echogenic, nano-sized polylactic acid UCA by adaptation of a salting-out method. The viscosity of the initial colloidal suspension (concentration and molecular weight of protective colloid [polyvinyl alcohol (PVA)] and concentration of polymer) was key in determining particle size and polydispersity (increasing viscosity increased both). Addition of the porogens ammonium carbonate and camphor, required to produce hollow echogenic capsules, also increased the size (eg, 5 wt% PVA, mean solid nanocapsule size 386 +/- 25 nm, polydispersity index 0.367 +/- 0.14, and mean UCA size 640 +/- 18 nm, polydispersity index 0.308 +/- 0.027). Viscosity had the opposite effect on echogenicity of the resultant nano-UCA, which ranged from 21.69 +/- 0.78 dB for 2% PVA to 12.1 +/- 0.8 dB for 10% PVA. The UCA prepared with 10% PVA, however, had a longer half-life in the ultrasound beam (t(1/2) > 15 minutes vs t(1/2) < 10 minutes), suggesting a thicker shell. Optimization will require compromise among size, echogenicity, and stability.


Assuntos
Meios de Contraste/química , Ácido Láctico/química , Nanopartículas/química , Polímeros/química , Álcool de Polivinil/química , Ultrassonografia/métodos , Análise de Variância , Cânfora/química , Carbonatos/química , Coloides/química , Microscopia Eletrônica de Varredura , Peso Molecular , Nanopartículas/ultraestrutura , Tamanho da Partícula , Poliésteres , Porosidade , Viscosidade
15.
Biotechnol Bioeng ; 106(3): 501-6, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20091738

RESUMO

In order for site-directed polymer ultrasound contrast agents (UCAs) to provide acoustic enhancement at disease sites to distinguish normal tissue from diseased tissue, the surface of these agents must be functionalized with mixtures of grafted polymers. Here a combination of longer liganded polyethylene glycol (PEG)-lipids and shorter unliganded PEG-lipids were introduced into the oil phase of a modified solvent evaporation double emulsion method for preparing UCAs. UCAs with different lengths of both liganded and unliganded lipids were imaged under 7.5 MHz ultrasound. The B-mode image brightness of the mixed PEG-lipid UCAs was within 1 dB the brightness of the unliganded surface. After 15 min of continuous insonation, 70% of the contrast signal remained. The peptide arginine-glycine-aspartic acid (RGD) was added to the surface of these UCAs through a biotin-avidin linkage and binding was assessed under static and shear conditions. Binding was significant after 30 min of static incubation and the adherence of the UCA increased under shear flow from 3 UCA/cell (static) to 5 UCA/cell (shear).


Assuntos
Meios de Contraste/química , Meios de Contraste/farmacologia , Metabolismo dos Lipídeos , Polietilenoglicóis/metabolismo , Polímeros/metabolismo , Ultrassonografia/métodos , Animais , Meios de Contraste/farmacocinética
16.
Biomacromolecules ; 11(11): 2936-43, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-20942395

RESUMO

Engineered tissue strategies for central nervous system (CNS) repair have the potential for localizing treatment using a wide variety of cells or growth factors. However, these strategies are often limited by their ability to address only one aspect of the injury. Here we report the development of a novel alginate construct that acts as a multifunctional tissue scaffold for CNS repair, and as a localized growth factor delivery vehicle. We show that the surface of this alginate construct acts as an optimal growth environment for neural progenitor cell (NPC) attachment, survival, migration, and differentiation. Importantly, we show that tailor-made alginate constructs containing brain-derived neurotrophic factor or neurotrophin-3 differentially direct lineage fates of NPCs and may therefore be useful in treating a wide variety of injuries. It is this potential for directed differentiation of a scaffold prior to implantation at the injury site that we explore here.


Assuntos
Fibroblastos/metabolismo , Engenharia Genética , Hidrogéis/química , Fatores de Crescimento Neural/biossíntese , Fatores de Crescimento Neural/genética , Células-Tronco Neurais/citologia , Animais , Cápsulas/química , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Fibroblastos/química , Fibroblastos/citologia , Tamanho da Partícula , Ratos , Propriedades de Superfície
17.
Int J Toxicol ; 29(1): 32-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20008819

RESUMO

Gas-filled microbubbles are used as contrast agents in diagnostic ultrasound imaging. A preclinical, acute toxicity study of 2 surfactant-stabilized ultrasound contrast agents (ST68 and ST44) was conducted. Subjects were 104 Sprague-Dawley rats (experimental doses, 0.1, 0.2, 0.8, and 1.0 mL/kg; control, 1.0 mL/kg saline) that were studied for 14 days after contrast; clinical signs, weight, blood, and urine were evaluated. Histopathology was performed following euthanasia. Of the 40 animals receiving ST44, 4 died prematurely and a dose dependency was demonstrated (P = .011), whereas in the ST68 groups only 1 death occurred (no dose dependency; P = .48). Only the weight of rats injected with ST44 varied significantly (P = .0003). This dependency was also found for 3 of 5 urine parameters and 4 of 36 blood parameters (P < .05). For ST68, only 1 urine parameter showed significance (P < .0001). Giant cell infiltration in the lungs was significantly higher than controls in the ST44 0.1 mL/kg and the ST68 0.8-1.0 mL/kg groups (P < .01). It is concluded that the prudent choice for future nonrodent, toxicology studies and potentially for human clinical trials is ST68 (given the deaths in the ST44 groups).


Assuntos
Meios de Contraste/toxicidade , Hexoses/toxicidade , Polissorbatos/toxicidade , Tensoativos , Animais , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Longevidade/efeitos dos fármacos , Masculino , Microbolhas , Ratos , Ratos Sprague-Dawley , Tensoativos/toxicidade , Testes de Toxicidade Aguda , Ultrassonografia
18.
J Nanobiotechnology ; 7: 1, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19351396

RESUMO

Antisense oligonucleotides (AOs) have been shown to induce dystrophin expression in muscles cells of patients with Duchenne Muscular Dystrophy (DMD) and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic poly(ethylene imine) (PEI) and non-ionic poly(ethylene glycol) (PEG) form stable nanoparticles when complexed with AOs, but the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA) nanospheres. Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge. Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately 3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential in treating DMD.

19.
J Biomed Mater Res A ; 106(7): 1903-1915, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29521001

RESUMO

This study represents the first attempt to combine surface TRAIL expression and doxorubicin co-encapsulation in a single drug delivery agent in the form of ultrasound-responsive microbubbles that shatter into fragments, or nanoshards, in an ultrasound beam. We compare customized microbubbles of different polymeric shell compositions, and investigate the effect of both shell composition and incorporation of doxorubicin on action against TRAIL-sensitive MDA-MB-231 and TRAIL-resistant MCF7 human breast adenocarcinoma cells. Ligation of TRAIL only significantly impacted MDA-MB-231 cells predominantly by apoptosis, and had minimal effect on MCF12A (normal control) cells. For all shell types, nanoshards had a greater effect (apoptotic death ranging from approximately 25% for 1 wt % LipidPEG to 50% for 100% PLA), reflecting the greater surface area and larger number of particles that ultrasound generates. Encapsulation of doxorubicin generated necrosis in all cell lines, but PEGylation produced less effective necrosis in all cell lines. Co-encapsulation of doxorubicin within the contrast agent shell increased MDA-MB-231 cell death to approximately 40-80%, representing a marked increase over TRAIL alone, reflecting the dramatic effect of shell composition. Additionally, shells that co-encapsulated TRAIL and doxorubicin resulted in approximately 30-60% death in TRAIL-resistant MCF7 human breast adenocarcinoma cells, compared with little apoptotic response in these cells from shells encapsulating TRAIL alone, demonstrating the sensitization effect of the drug. This work has resulted in production of a library of effective ultrasound-triggered, minimally immunogenic, targeted drug delivery agents for potential use in cancer therapy, and represents a promising multifaceted treatment to better serve the population with solid tumors. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1903-1915, 2018.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Microesferas , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Lipídeos/química , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Ultrassonografia
20.
Int J Radiat Oncol Biol Phys ; 101(1): 88-96, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29477294

RESUMO

PURPOSE: Much of the volume of solid tumors typically exists in a chronically hypoxic microenvironment that has been shown to result in both chemotherapy and radiation therapy resistance. The purpose of this study was to use localized microbubble delivery to overcome hypoxia prior to therapy. MATERIALS AND METHODS: In this study, surfactant-shelled oxygen microbubbles were fabricated and injected intravenously to locally elevate tumor oxygen levels when triggered by noninvasive ultrasound in mice with human breast cancer tumors. Changes in oxygen and sensitivity to radiation therapy were then measured. RESULTS: In this work, we show that oxygen-filled microbubbles successfully and consistently increase breast tumor oxygenation levels in a murine model by 20 mmHg, significantly more than control injections of saline solution or untriggered oxygen microbubbles (P < .001). Using photoacoustic imaging, we also show that oxygen delivery is independent of hemoglobin transport, enabling oxygen delivery to avascular regions of the tumor. Finally, we show that overcoming hypoxia by this method immediately prior to radiation therapy nearly triples radiosensitivity. This improvement in radiosensitivity results in roughly 30 days of improved tumor control, providing statistically significant improvements in tumor growth and animal survival (P < .03). CONCLUSIONS: Our findings demonstrate the potential advantages of ultrasound-triggered oxygen delivery to solid tumors and warrant future efforts into clinical translation of the microbubble platform.


Assuntos
Microbolhas , Oxigênio/administração & dosagem , Tolerância a Radiação , Neoplasias de Mama Triplo Negativas/radioterapia , Hipóxia Tumoral/efeitos da radiação , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Injeções Intravenosas , Camundongos , Camundongos Nus , Oxigênio/metabolismo , Consumo de Oxigênio , Pressão Parcial , Distribuição Aleatória , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Terapia por Ultrassom/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA