Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(8): 4466-4482, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38567721

RESUMO

A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of Escherichia coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37°C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65°C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.


Assuntos
Pareamento de Bases , Escherichia coli , Fluoretos , Conformação de Ácido Nucleico , Riboswitch , Transcrição Gênica , Riboswitch/genética , Fluoretos/química , Escherichia coli/genética , Simulação de Dinâmica Molecular , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Dobramento de RNA , Magnésio/química , Sequência de Bases , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Thermus/genética , Thermus/enzimologia
2.
Nucleic Acids Res ; 50(21): 12001-12018, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35348734

RESUMO

RNA folds cotranscriptionally to traverse out-of-equilibrium intermediate structures that are important for RNA function in the context of gene regulation. To investigate this process, here we study the structure and function of the Bacillus subtilis yxjA purine riboswitch, a transcriptional riboswitch that downregulates a nucleoside transporter in response to binding guanine. Although the aptamer and expression platform domain sequences of the yxjA riboswitch do not completely overlap, we hypothesized that a strand exchange process triggers its structural switching in response to ligand binding. In vivo fluorescence assays, structural chemical probing data and experimentally informed secondary structure modeling suggest the presence of a nascent intermediate central helix. The formation of this central helix in the absence of ligand appears to compete with both the aptamer's P1 helix and the expression platform's transcriptional terminator. All-atom molecular dynamics simulations support the hypothesis that ligand binding stabilizes the aptamer P1 helix against central helix strand invasion, thus allowing the terminator to form. These results present a potential model mechanism to explain how ligand binding can induce downstream conformational changes by influencing local strand displacement processes of intermediate folds that could be at play in multiple riboswitch classes.


Riboswitches have challenged our understanding of biological regulation for almost two decades. The ability of small molecules to bind to RNA and control gene expression offers another layer of regulation and the potential for direct action by compounds in the environment. While some riboswitches have been well studied, we lack a general understanding of how changes in RNA structure switch genetic expression from "On" to "Off". In this study, the authors propose an elegant "strand displacement" model to explain how the RNA structure shifts between "On" and "Off" states as the concentration of small molecule ligand changes. These observations help us to understand how riboswitches enable genetic decision-making. The data provide a possible general mechanism for understanding how the competition between different strand displacement outcomes can influence RNA folding. Understanding RNA folding pathways could advance the successful design of drugs that target RNA.


Assuntos
Bacillus subtilis , Regulação da Expressão Gênica , Riboswitch , Aptâmeros de Nucleotídeos/química , Ligantes , Conformação de Ácido Nucleico , Purinas , Dobramento de RNA , Transcrição Gênica , Bacillus subtilis/genética
3.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106011

RESUMO

A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of E. coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37 °C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65 °C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA