Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 613(7943): 292-297, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631651

RESUMO

The recovery of long-term climate proxy records with seasonal resolution is rare because of natural smoothing processes, discontinuities and limitations in measurement resolution. Yet insolation forcing, a primary driver of multimillennial-scale climate change, acts through seasonal variations with direct impacts on seasonal climate1. Whether the sensitivity of seasonal climate to insolation matches theoretical predictions has not been assessed over long timescales. Here, we analyse a continuous record of water-isotope ratios from the West Antarctic Ice Sheet Divide ice core to reveal summer and winter temperature changes through the last 11,000 years. Summer temperatures in West Antarctica increased through the early-to-mid-Holocene, reached a peak 4,100 years ago and then decreased to the present. Climate model simulations show that these variations primarily reflect changes in maximum summer insolation, confirming the general connection between seasonal insolation and warming and demonstrating the importance of insolation intensity rather than seasonally integrated insolation or season duration2,3. Winter temperatures varied less overall, consistent with predictions from insolation forcing, but also fluctuated in the early Holocene, probably owing to changes in meridional heat transport. The magnitudes of summer and winter temperature changes constrain the lowering of the West Antarctic Ice Sheet surface since the early Holocene to less than 162 m and probably less than 58 m, consistent with geological constraints elsewhere in West Antarctica4-7.

2.
Nature ; 538(7623): 88-91, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708291

RESUMO

Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.


Assuntos
Atmosfera/química , Bases de Dados Factuais , Combustíveis Fósseis , Metano/análise , Isótopos de Carbono/análise , Carvão Mineral , Método de Monte Carlo , Gás Natural , Petróleo
3.
Nature ; 514(7524): 616-9, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25355363

RESUMO

Global climate and the concentration of atmospheric carbon dioxide (CO2) are correlated over recent glacial cycles. The combination of processes responsible for a rise in atmospheric CO2 at the last glacial termination (23,000 to 9,000 years ago), however, remains uncertain. Establishing the timing and rate of CO2 changes in the past provides critical insight into the mechanisms that influence the carbon cycle and helps put present and future anthropogenic emissions in context. Here we present CO2 and methane (CH4) records of the last deglaciation from a new high-accumulation West Antarctic ice core with unprecedented temporal resolution and precise chronology. We show that although low-frequency CO2 variations parallel changes in Antarctic temperature, abrupt CO2 changes occur that have a clear relationship with abrupt climate changes in the Northern Hemisphere. A significant proportion of the direct radiative forcing associated with the rise in atmospheric CO2 occurred in three sudden steps, each of 10 to 15 parts per million. Every step took place in less than two centuries and was followed by no notable change in atmospheric CO2 for about 1,000 to 1,500 years. Slow, millennial-scale ventilation of Southern Ocean CO2-rich, deep-ocean water masses is thought to have been fundamental to the rise in atmospheric CO2 associated with the glacial termination, given the strong covariance of CO2 levels and Antarctic temperatures. Our data establish a contribution from an abrupt, centennial-scale mode of CO2 variability that is not directly related to Antarctic temperature. We suggest that processes operating on centennial timescales, probably involving the Atlantic meridional overturning circulation, seem to be influencing global carbon-cycle dynamics and are at present not widely considered in Earth system models.


Assuntos
Ciclo do Carbono , Regiões Antárticas , Atmosfera/química , Dióxido de Carbono/análise , Efeito Estufa , Groenlândia , História Antiga , Camada de Gelo , Isótopos , Metano/análise , Oceanos e Mares , Água/análise , Água/química
4.
Proc Natl Acad Sci U S A ; 114(21): 5373-5377, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28416657

RESUMO

The growth in global methane (CH4) concentration, which had been ongoing since the industrial revolution, stalled around the year 2000 before resuming globally in 2007. We evaluate the role of the hydroxyl radical (OH), the major CH4 sink, in the recent CH4 growth. We also examine the influence of systematic uncertainties in OH concentrations on CH4 emissions inferred from atmospheric observations. We use observations of 1,1,1-trichloroethane (CH3CCl3), which is lost primarily through reaction with OH, to estimate OH levels as well as CH3CC3 emissions, which have uncertainty that previously limited the accuracy of OH estimates. We find a 64-70% probability that a decline in OH has contributed to the post-2007 methane rise. Our median solution suggests that CH4 emissions increased relatively steadily during the late 1990s and early 2000s, after which growth was more modest. This solution obviates the need for a sudden statistically significant change in total CH4 emissions around the year 2007 to explain the atmospheric observations and can explain some of the decline in the atmospheric 13CH4/12CH4 ratio and the recent growth in C2H6 Our approach indicates that significant OH-related uncertainties in the CH4 budget remain, and we find that it is not possible to implicate, with a high degree of confidence, rapid global CH4 emissions changes as the primary driver of recent trends when our inferred OH trends and these uncertainties are considered.

5.
Chaos ; 29(10): 101105, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31675841

RESUMO

Paleoclimate records are rich sources of information about the past history of the Earth system. Information theory provides a new means for studying these records. We demonstrate that weighted permutation entropy of water-isotope data from the West Antarctica Ice Sheet (WAIS) Divide ice core reveals meaningful climate signals in this record. We find that this measure correlates with accumulation (meters of ice equivalent per year) and may record the influence of geothermal heating effects in the deepest parts of the core. Dansgaard-Oeschger and Antarctic Isotope Maxima events, however, do not appear to leave strong signatures in the information record, suggesting that these abrupt warming events may actually be predictable features of the climate's dynamics. While the potential power of information theory in paleoclimatology is significant, the associated methods require well-dated and high-resolution data. The WAIS Divide core is the first paleoclimate record that can support this kind of analysis. As more high-resolution records become available, information theory could become a powerful forensic tool in paleoclimate science.

7.
Entropy (Basel) ; 20(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33266655

RESUMO

Permutation entropy techniques can be useful for identifying anomalies in paleoclimate data records, including noise, outliers, and post-processing issues. We demonstrate this using weighted and unweighted permutation entropy with water-isotope records containing data from a deep polar ice core. In one region of these isotope records, our previous calculations (See Garland et al. 2018) revealed an abrupt change in the complexity of the traces: specifically, in the amount of new information that appeared at every time step. We conjectured that this effect was due to noise introduced by an older laboratory instrument. In this paper, we validate that conjecture by reanalyzing a section of the ice core using a more advanced version of the laboratory instrument. The anomalous noise levels are absent from the permutation entropy traces of the new data. In other sections of the core, we show that permutation entropy techniques can be used to identify anomalies in the data that are not associated with climatic or glaciological processes, but rather effects occurring during field work, laboratory analysis, or data post-processing. These examples make it clear that permutation entropy is a useful forensic tool for identifying sections of data that require targeted reanalysis-and can even be useful for guiding that analysis.

8.
Phys Rev E ; 103(2-1): 022217, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33736085

RESUMO

Mixing of neighboring data points in a sequence is a common, but understudied, effect in physical experiments. This can occur in the measurement apparatus (if material from multiple time points is pulled into a measurement chamber simultaneously, for instance) or the system itself, e.g., via diffusion of isotopes in an ice sheet. We propose a model-free technique to detect this kind of local mixing in time-series data using an information-theoretic technique called permutation entropy. By varying the temporal resolution of the calculation and analyzing the patterns in the results, we can determine whether the data are mixed locally, and on what scale. This can be used by practitioners to choose appropriate lower bounds on scales at which to measure or report data. After validating this technique on several synthetic examples, we demonstrate its effectiveness on data from a chemistry experiment, methane records from Mauna Loa, and an Antarctic ice core.

9.
Sci Data ; 8(1): 141, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040008

RESUMO

We report high resolution measurements of the stable isotope ratios of ancient ice (δ18O, δD) from the North Greenland Eemian deep ice core (NEEM, 77.45° N, 51.06° E). The record covers the period 8-130 ky b2k (y before 2000) with a temporal resolution of ≈0.5 and 7 y at the top and the bottom of the core respectively and contains important climate events such as the 8.2 ky event, the last glacial termination and a series of glacial stadials and interstadials. At its bottom part the record contains ice from the Eemian interglacial. Isotope ratios are calibrated on the SMOW/SLAP scale and reported on the GICC05 (Greenland Ice Core Chronology 2005) and AICC2012 (Antarctic Ice Core Chronology 2012) time scales interpolated accordingly. We also provide estimates for measurement precision and accuracy for both δ18O and δD.

10.
Sci Adv ; 5(6): eaaw0076, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31183402

RESUMO

Long-term atmospheric CO2 mole fraction and δ13CO2 observations over North America document persistent responses to the El Niño-Southern Oscillation. We estimate these responses corresponded to 0.61 (0.45 to 0.79) PgC year-1 more North American carbon uptake during El Niño than during La Niña between 2007 and 2015, partially offsetting increases of net tropical biosphere-to-atmosphere carbon flux around El Niño. Anomalies in derived North American net ecosystem exchange (NEE) display strong but opposite correlations with surface air temperature between seasons, while their correlation with water availability was more constant throughout the year, such that water availability is the dominant control on annual NEE variability over North America. These results suggest that increased water availability and favorable temperature conditions (warmer spring and cooler summer) caused enhanced carbon uptake over North America near and during El Niño.

11.
Nat Geosci ; 11(9): 744-748, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30319710

RESUMO

Severe droughts in the Northern Hemisphere cause widespread decline of agricultural yield, reduction of forest carbon uptake, and increased CO2 growth rates in the atmosphere. Plants respond to droughts by partially closing their stomata to limit their evaporative water loss, at the expense of carbon uptake by photosynthesis. This trade-off maximizes their water-use efficiency, as measured for many individual plants under laboratory conditions and field experiments. Here we analyze the 13C/12C stable isotope ratio in atmospheric CO2 (reported as δ13C) to provide new observational evidence of the impact of droughts on the water-use efficiency across areas of millions of km2 and spanning one decade of recent climate variability. We find strong and spatially coherent increases in water-use efficiency along with widespread reductions of net carbon uptake over the Northern Hemisphere during severe droughts that affected Europe, Russia, and the United States in 2001-2011. The impact of those droughts on water-use efficiency and carbon uptake by vegetation is substantially larger than simulated by the land-surface schemes of six state-of-the-art climate models. This suggests that drought induced carbon-climate feedbacks may be too small in these models and improvements to their vegetation dynamics using stable isotope observations can help to improve their drought response.

12.
Sci Rep ; 7: 45759, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393869

RESUMO

Year-to-year variations in the atmospheric methane (CH4) growth rate show significant correlation with climatic drivers. The second half of 2010 and the first half of 2011 experienced the strongest La Niña since the early 1980s, when global surface networks started monitoring atmospheric CH4 mole fractions. We use these surface measurements, retrievals of column-averaged CH4 mole fractions from GOSAT, new wetland inundation estimates, and atmospheric δ13C-CH4 measurements to estimate the impact of this strong La Niña on the global atmospheric CH4 budget. By performing atmospheric inversions, we find evidence of an increase in tropical CH4 emissions of ∼6-9 TgCH4 yr-1 during this event. Stable isotope data suggest that biogenic sources are the cause of this emission increase. We find a simultaneous expansion of wetland area, driven by the excess precipitation over the Tropical continents during the La Niña. Two process-based wetland models predict increases in wetland area consistent with observationally-constrained values, but substantially smaller per-area CH4 emissions, highlighting the need for improvements in such models. Overall, tropical wetland emissions during the strong La Niña were at least by 5% larger than the long-term mean.

13.
Sci Adv ; 2(4): e1501704, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27386509

RESUMO

Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland.


Assuntos
Atmosfera , Aquecimento Global , Camada de Gelo , Movimentos da Água , Congelamento , Groenlândia , Neve , Temperatura
14.
Science ; 352(6281): 80-4, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26966190

RESUMO

Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH4] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH4] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH4 sink caused the [CH4] plateau. Thermogenic emissions did not resume to cause the renewed [CH4] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH4 emissions must be balanced with the need for food production.

15.
Science ; 345(6201): 1177-80, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25190795

RESUMO

Greenland ice core water isotopic composition (δ(18)O) provides detailed evidence for abrupt climate changes but is by itself insufficient for quantitative reconstruction of past temperatures and their spatial patterns. We investigate Greenland temperature evolution during the last deglaciation using independent reconstructions from three ice cores and simulations with a coupled ocean-atmosphere climate model. Contrary to the traditional δ(18)O interpretation, the Younger Dryas period was 4.5° ± 2°C warmer than the Oldest Dryas, due to increased carbon dioxide forcing and summer insolation. The magnitude of abrupt temperature changes is larger in central Greenland (9° to 14°C) than in the northwest (5° to 9°C), fingerprinting a North Atlantic origin. Simulated changes in temperature seasonality closely track changes in the Atlantic overturning strength and support the hypothesis that abrupt climate change is mostly a winter phenomenon.


Assuntos
Mudança Climática , Camada de Gelo , Temperatura , Simulação por Computador , Congelamento , Groenlândia , Modelos Teóricos , Isótopos de Oxigênio/análise
16.
Opt Lett ; 34(2): 172-4, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19148245

RESUMO

A precision laser spectrometer for the detection of CO(2) isotopes is reported. The spectrometer measures the fundamental absorption signatures of (13)C and (12)C isotopes in CO(2) at 4.32 microm using a tunable mid-IR laser source based on difference-frequency generation. The spectrometer attains a precision of up to 0.02 per thousand for 150 s of averaging. An overall accuracy of 0.05 per thousand was obtained when sampling various calibrated reference gases.

17.
Science ; 321(5889): 680-4, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18566247

RESUMO

The last two abrupt warmings at the onset of our present warm interglacial period, interrupted by the Younger Dryas cooling event, were investigated at high temporal resolution from the North Greenland Ice Core Project ice core. The deuterium excess, a proxy of Greenland precipitation moisture source, switched mode within 1 to 3 years over these transitions and initiated a more gradual change (over 50 years) of the Greenland air temperature, as recorded by stable water isotopes. The onsets of both abrupt Greenland warmings were slightly preceded by decreasing Greenland dust deposition, reflecting the wetting of Asian deserts. A northern shift of the Intertropical Convergence Zone could be the trigger of these abrupt shifts of Northern Hemisphere atmospheric circulation, resulting in changes of 2 to 4 kelvin in Greenland moisture source temperature from one year to the next.

18.
Science ; 304(5677): 1609-10, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15192208
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA