Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Foodborne Pathog Dis ; 20(4): 123-131, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015074

RESUMO

Vibrio parahaemolyticus is the leading cause of seafood-related foodborne illness globally. In 2018, the U.S. federal, state, and local public health and regulatory partners investigated a multistate outbreak of V. parahaemolyticus infections linked to crabmeat that resulted in 26 ill people and nine hospitalizations. State and U.S. Food and Drug Administration (FDA) laboratories recovered V. parahaemolyticus, Salmonella spp., and Listeria monocytogenes isolates from crabmeat samples collected from various points of distribution and conducted phylogenetic analyses of whole-genome sequencing data. Federal, state, and local partners conducted traceback investigations to determine the source of crabmeat. Multiple Venezuelan processors that supplied various brands of crabmeat were identified, but a sole firm was not confirmed as the source of the outbreak. Travel restrictions between the United States and Venezuela prevented FDA officials from conducting on-site inspections of cooked crabmeat processors. Based on investigation findings, partners developed public communications advising consumers not to eat crabmeat imported from Venezuela and placed potentially implicated firms on import alerts. While some challenges limited the scope of the investigation, epidemiologic, traceback, and laboratory evidence identified the contaminated food and country of origin, and contributed to public health and regulatory actions, preventing additional illnesses. This multistate outbreak illustrates the importance of adhering to appropriate food safety practices and regulations for imported seafood.


Assuntos
Doenças Transmitidas por Alimentos , Vibrioses , Vibrio parahaemolyticus , Humanos , Estados Unidos/epidemiologia , Filogenia , Venezuela/epidemiologia , Doenças Transmitidas por Alimentos/epidemiologia , Vibrioses/epidemiologia , Surtos de Doenças
2.
Epidemiol Infect ; 149: e214, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34511150

RESUMO

Cyclosporiasis is an illness characterised by watery diarrhoea caused by the food-borne parasite Cyclospora cayetanensis. The increase in annual US cyclosporiasis cases led public health agencies to develop genotyping tools that aid outbreak investigations. A team at the Centers for Disease Control and Prevention (CDC) developed a system based on deep amplicon sequencing and machine learning, for detecting genetically-related clusters of cyclosporiasis to aid epidemiologic investigations. An evaluation of this system during 2018 supported its robustness, indicating that it possessed sufficient utility to warrant further evaluation. However, the earliest version of CDC's system had some limitations from a bioinformatics standpoint. Namely, reliance on proprietary software, the inability to detect novel haplotypes and absence of a strategy to select an appropriate number of discrete genetic clusters would limit the system's future deployment potential. We recently introduced several improvements that address these limitations and the aim of this study was to reassess the system's performance to ensure that the changes introduced had no observable negative impacts. Comparison of epidemiologically-defined cyclosporiasis clusters from 2019 to analogous genetic clusters detected using CDC's improved system reaffirmed its excellent sensitivity (90%) and specificity (99%), and confirmed its high discriminatory power. This C. cayetanensis genotyping system is robust and with ongoing improvement will form the basis of a US-wide C. cayetanensis genotyping network for clinical specimens.


Assuntos
Cyclospora/genética , Ciclosporíase/diagnóstico , Ciclosporíase/epidemiologia , Surtos de Doenças , Técnicas de Laboratório Clínico , Análise por Conglomerados , Cyclospora/classificação , Cyclospora/isolamento & purificação , Ciclosporíase/parasitologia , DNA de Protozoário/genética , Fezes/parasitologia , Genótipo , Técnicas de Genotipagem , Humanos , Epidemiologia Molecular , Estados Unidos/epidemiologia
3.
N Engl J Med ; 377(21): 2036-2043, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29166238

RESUMO

BACKGROUND: In 2016, a multijurisdictional team investigated an outbreak of Shiga toxin-producing Escherichia coli (STEC) serogroup O121 and O26 infections linked to contaminated flour from a large domestic producer. METHODS: A case was defined as infection with an outbreak strain in which illness onset was between December 21, 2015, and September 5, 2016. To identify exposures associated with the outbreak, outbreak cases were compared with non-STEC enteric illness cases, matched according to age group, sex, and state of residence. Products suspected to be related to the outbreak were collected for STEC testing, and a common point of contamination was sought. Whole-genome sequencing was performed on isolates from clinical and food samples. RESULTS: A total of 56 cases were identified in 24 states. Univariable exact conditional logistic-regression models of 22 matched sets showed that infection was significantly associated with the use of one brand of flour (odds ratio, 21.04; 95% confidence interval [CI], 4.69 to 94.37) and with tasting unbaked homemade dough or batter (odds ratio, 36.02; 95% CI, 4.63 to 280.17). Laboratory testing isolated the outbreak strains from flour samples, and whole-genome sequencing revealed that the isolates from clinical and food samples were closely related to one another genetically. Trace-back investigation identified a common flour-production facility. CONCLUSIONS: This investigation implicated raw flour as the source of an outbreak of STEC infections. Although it is a low-moisture food, raw flour can be a vehicle for foodborne pathogens.


Assuntos
Surtos de Doenças , Infecções por Escherichia coli/epidemiologia , Farinha/intoxicação , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/epidemiologia , Escherichia coli Shiga Toxigênica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Infecções por Escherichia coli/microbiologia , Feminino , Farinha/microbiologia , Humanos , Lactente , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Sorogrupo , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Inquéritos e Questionários , Estados Unidos/epidemiologia , Adulto Jovem
4.
J Food Prot ; 84(11): 2002-2019, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34265065

RESUMO

ABSTRACT: In 2017 and 2019, five outbreaks of infections from multiple strains of Salmonella linked to the consumption of whole, fresh Maradol papayas were reported in the United States, resulting in 325 ill persons. Traceback, laboratory, and epidemiologic evidence indicated papayas as the likely vehicle for each of these outbreaks and identified the source of papayas. State and U.S. Food and Drug Administration (FDA) laboratories recovered Salmonella from papaya samples from various points of distribution, including at import entry, and conducted serotyping, pulsed-field gel electrophoresis, and phylogenetic analyses of whole genome sequencing data. Federal and state partners led traceback investigations to determine the source of papayas. Four different suppliers of papayas were linked by traceback and laboratory results to five separate outbreaks of Salmonella infections associated with papayas. In 2017, multiple states tested papaya samples collected at retail, and Maryland and Virginia investigators recovered strains of Salmonella associated with one outbreak. FDA collected 183 papaya samples in 2017, and 11 samples yielded 62 isolates of Salmonella. Eleven serotypes of Salmonella were recovered from FDA papaya samples, and nine serotypes were closely related genetically by pulsed-field gel electrophoresis and whole genome sequencing to clinical isolates of four outbreaks, including the outbreak associated with positive state sample results. Four farms in Mexico were identified, and their names were released to the general public, retailers, and foreign authorities. In 2019, FDA collected 119 papaya samples, three of which yielded Salmonella; none yielded the 2019 outbreak strain. Investigators determined that papayas of interest had been sourced from a single farm in Campeche, Mexico, through traceback. This information was used to protect public health through public guidance, recalls, and import alerts and helped FDA collaborate with Mexican regulatory partners to enhance the food safety requirements for papayas imported from Mexico.


Assuntos
Carica , Intoxicação Alimentar por Salmonella , Surtos de Doenças , Humanos , Laboratórios , Filogenia , Salmonella , Intoxicação Alimentar por Salmonella/epidemiologia , Estados Unidos/epidemiologia
5.
J Food Prot ; 71(4): 820-4, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18468040

RESUMO

The effect of high pressure processing in conjunction with the chemical antimicrobials, dimethyl dicarbonate (DMDC), hydrogen peroxide, cinnamic acid, potassium sorbate, and sodium benzoate (NaB) on E. coli O157:H7 strain E009 and Salmonella enterica serovar Agona was investigated in apple juice and orange juice, respectively. Juices were inoculated with approximately 10(6) CFU/ml and subjected to pressures of 550 MPa (E. coli O157:H7 samples) and 400 MPa (Salmonella Agona samples) for 2 min at 6 degrees C (initial temperature). Populations of each pathogen were determined before pressurization, immediately after pressurization, and after samples had been held after treatment for 24 h at 4 degrees C. The most effective treatment for E. coli O157:H7, as determined by plating immediately after pressurization, was 125 ppm of DMDC, which caused a >4.98-log reduction. Other treatments that were significantly different from the sample with no added antimicrobial were 62.5 ppm of DMDC, 300 ppm of hydrogen peroxide, and 500 ppm of NaB, which produced 4.97-, 5.79-, and 3.91-log total reductions, respectively. After 24 h at 4 degrees C, E. coli O157:H7 was undetectable in all treatment groups (and controls). In samples inoculated with Salmonella, the most effective treatment was 62.5 ppm of DMDC, which produced a 5.96-log decrease immediately after pressure treatment. The results for 1,000 ppm of NaB, which produced a 3.26-log decrease, also were significantly different from those for the sample containing no antimicrobials. After 24 h at 4 degrees C, all samples with added antimicrobials had near or more than a 5-log total reduction of Salmonella Agona.


Assuntos
Antibacterianos/farmacologia , Bebidas/microbiologia , Escherichia coli O157/crescimento & desenvolvimento , Contaminação de Alimentos/prevenção & controle , Pressão , Salmonella enterica/crescimento & desenvolvimento , Citrus sinensis/microbiologia , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Relação Dose-Resposta a Droga , Escherichia coli O157/efeitos dos fármacos , Contaminação de Alimentos/análise , Malus/microbiologia , Testes de Sensibilidade Microbiana , Salmonella enterica/efeitos dos fármacos , Temperatura , Fatores de Tempo
6.
J Food Prot ; 70(9): 2078-83, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17900085

RESUMO

The effect of high pressure on the log reduction of six strains of Escherichia coli O157:H7 and five serovars of Salmonella enterica was investigated in tryptic soy broth, sterile distilled water, and commercially sterile orange juice (for Salmonella) and apple cider (for E. coli). Samples were subjected to high-pressure processing treatment at 300 and 550 MPa for 2 min at 6 degrees C. Samples were plated onto tryptic soy agar directly after pressurization and after being held for 24 h at 4 degrees C. At 300 MPa, little effect was seen on E. coli O157:H7 strains, while Salmonella serovars varied in resistance, showing reductions between 0.26 and 3.95 log CFU/ml. At 550 MPa, E. coli O157:H7 strains exhibited a range of reductions (0.28 to 4.39 log CFU/ml), while most Salmonella populations decreased beyond the detection limit (> 5-log CFU/ml reduction). The most resistant strains tested were E. coli E009 and Salmonella Agona. Generally, bacterial populations in fruit juices showed larger decreases than did populations in tryptic soy broth and distilled water. E. coli O157:H7 cultures held for 24 h at 4 degrees C after treatment at 550 MPa showed a significant log decrease as compared with cultures directly after treatment (P < or = 0.05), while Salmonella serovars did not show this significant decrease (P > 0.05). All Salmonella serovars tested in orange juice treated at 550 MPa for 2 min at 6 degrees C and held for 24 h showed a > 5-log decrease, while E. coli O157:H7 strains require a higher pressure, higher temperature, longer pressurization, or a chemical additive to achieve a 5-log decrease.


Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos , Pressão Hidrostática , Salmonella/crescimento & desenvolvimento , Bebidas/microbiologia , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Meios de Cultura , Microbiologia de Alimentos , Frutas , Humanos , Salmonella enterica/crescimento & desenvolvimento , Temperatura , Fatores de Tempo , Microbiologia da Água
7.
Sci Rep ; 7(1): 11017, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887450

RESUMO

Distillers grains are co-products of the corn ethanol industry widely used in animal feed. We examined the effects of erythromycin, penicillin, and virginiamycin at low concentrations reflective of those detected in distillers grains on bacterial resistance selection. At 0.1 µg/ml erythromycin, macrolide-resistant mutants were induced in one Campylobacter coli and one Enterococcus faecium strain, while these strains plus three additional C. coli, one additional E. faecium, and one C. jejuni also developed resistance when exposed to 0.25 µg/ml erythromycin. At 0.5 µg/ml erythromycin, a total of eight strains (four Campylobacter and four Enterococcus) obtained macrolide-resistant mutants, including two strains from each genus that were not selected at lower erythromycin concentrations. For penicillin, three of five E. faecium strains but none of five Enterococcus faecalis strains consistently developed resistance at all three selection concentrations. Virginiamycin at two M1:S1 ratios did not induce resistance development in four out of five E. faecium strains; however, increased resistance was observed in the fifth one under 0.25 and 0.5 µg/ml virginiamycin selections. Although not yet tested in vivo, these findings suggest a potential risk of stimulating bacterial resistance development in the animal gut when distillers grains containing certain antibiotic residues are used in animal feed.


Assuntos
Antibacterianos/farmacologia , Campylobacter/efeitos dos fármacos , Farmacorresistência Bacteriana , Enterococcus/efeitos dos fármacos , Eritromicina/farmacologia , Penicilinas/farmacologia , Virginiamicina/farmacologia , Taxa de Mutação , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA