Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(6): 927-939, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35624205

RESUMO

Hypoxemia is a defining feature of acute respiratory distress syndrome (ARDS), an often-fatal complication of pulmonary or systemic inflammation, yet the resulting tissue hypoxia, and its impact on immune responses, is often neglected. In the present study, we have shown that ARDS patients were hypoxemic and monocytopenic within the first 48 h of ventilation. Monocytopenia was also observed in mouse models of hypoxic acute lung injury, in which hypoxemia drove the suppression of type I interferon signaling in the bone marrow. This impaired monopoiesis resulted in reduced accumulation of monocyte-derived macrophages and enhanced neutrophil-mediated inflammation in the lung. Administration of colony-stimulating factor 1 in mice with hypoxic lung injury rescued the monocytopenia, altered the phenotype of circulating monocytes, increased monocyte-derived macrophages in the lung and limited injury. Thus, tissue hypoxia altered the dynamics of the immune response to the detriment of the host and interventions to address the aberrant response offer new therapeutic strategies for ARDS.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Humanos , Hipóxia/etiologia , Inflamação/complicações , Pulmão , Lesão Pulmonar/complicações , Camundongos
3.
Blood ; 139(2): 281-286, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34411229

RESUMO

Neutrophils are predominantly glycolytic cells that derive little ATP from oxidative phosphorylation; however, they possess an extensive mitochondrial network and maintain a mitochondrial membrane potential. Although studies have shown neutrophils need their mitochondria to undergo apoptosis and regulate NETosis, the metabolic role of the respiratory chain in these highly glycolytic cells is still unclear. Recent studies have expanded on the role of reactive oxygen species (ROS) released from the mitochondria as intracellular signaling molecules. Our study shows that neutrophils can use their mitochondria to generate ROS and that mitochondrial ROS release is increased in hypoxic conditions. This is needed for the stabilization of a high level of the critical hypoxic response factor and pro-survival protein HIF-1α in hypoxia. Further, we demonstrate that neutrophils use the glycerol 3-phosphate pathway as a way of directly regulating mitochondrial function through glycolysis, specifically to maintain polarized mitochondria and produce ROS. This illustrates an additional pathway by which neutrophils can regulate HIF-1α stability and will therefore be an important consideration when looking for treatments of inflammatory conditions in which HIF-1α activation and neutrophil persistence at the site of inflammation are linked to disease severity.


Assuntos
Glicerofosfatos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hipóxia Celular , Células Cultivadas , Humanos , Estabilidade Proteica
4.
Am J Respir Crit Care Med ; 207(8): 998-1011, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724365

RESUMO

Rationale: Chronic obstructive pulmonary disease (COPD) is a disease characterized by persistent airway inflammation and disordered macrophage function. The extent to which alterations in macrophage bioenergetics contribute to impaired antioxidant responses and disease pathogenesis has yet to be fully delineated. Objectives: Through the study of COPD alveolar macrophages (AMs) and peripheral monocyte-derived macrophages (MDMs), we sought to establish if intrinsic defects in core metabolic processes drive macrophage dysfunction and redox imbalance. Methods: AMs and MDMs from donors with COPD and healthy donors underwent functional, metabolic, and transcriptional profiling. Measurements and Main Results: We observed that AMs and MDMs from donors with COPD display a critical depletion in glycolytic- and mitochondrial respiration-derived energy reserves and an overreliance on glycolysis as a source for ATP, resulting in reduced energy status. Defects in oxidative metabolism extend to an impaired redox balance associated with defective expression of the NADPH-generating enzyme, ME1 (malic enzyme 1), a known target of the antioxidant transcription factor NRF2 (nuclear factor erythroid 2-related factor 2). Consequently, selective activation of NRF2 resets the COPD transcriptome, resulting in increased generation of TCA cycle intermediaries, improved energetic status, favorable redox balance, and recovery of macrophage function. Conclusions: In COPD, an inherent loss of metabolic plasticity leads to metabolic exhaustion and reduced redox capacity, which can be rescued by activation of the NRF2 pathway. Targeting these defects, via NRF2 augmentation, may therefore present an attractive therapeutic strategy for the treatment of the aberrant airway inflammation described in COPD.


Assuntos
Fator 2 Relacionado a NF-E2 , Doença Pulmonar Obstrutiva Crônica , Humanos , Macrófagos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Malato Desidrogenase/metabolismo
5.
Am J Respir Crit Care Med ; 207(11): 1515-1524, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780644

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by limited treatment options and high mortality. A better understanding of the molecular drivers of IPF progression is needed. Objectives: To identify and validate molecular determinants of IPF survival. Methods: A staged genome-wide association study was performed using paired genomic and survival data. Stage I cases were drawn from centers across the United States and Europe and stage II cases from Vanderbilt University. Cox proportional hazards regression was used to identify gene variants associated with differential transplantation-free survival (TFS). Stage I variants with nominal significance (P < 5 × 10-5) were advanced for stage II testing and meta-analyzed to identify those reaching genome-wide significance (P < 5 × 10-8). Downstream analyses were performed for genes and proteins associated with variants reaching genome-wide significance. Measurements and Main Results: After quality controls, 1,481 stage I cases and 397 stage II cases were included in the analysis. After filtering, 9,075,629 variants were tested in stage I, with 158 meeting advancement criteria. Four variants associated with TFS with consistent effect direction were identified in stage II, including one in an intron of PCSK6 (proprotein convertase subtilisin/kexin type 6) reaching genome-wide significance (hazard ratio, 4.11 [95% confidence interval, 2.54-6.67]; P = 9.45 × 10-9). PCSK6 protein was highly expressed in IPF lung parenchyma. PCSK6 lung staining intensity, peripheral blood gene expression, and plasma concentration were associated with reduced TFS. Conclusions: We identified four novel variants associated with IPF survival, including one in PCSK6 that reached genome-wide significance. Downstream analyses suggested that PCSK6 protein plays a potentially important role in IPF progression.


Assuntos
Estudo de Associação Genômica Ampla , Fibrose Pulmonar Idiopática , Humanos , Pulmão , Modelos de Riscos Proporcionais , Europa (Continente) , Serina Endopeptidases , Pró-Proteína Convertases
6.
Lancet ; 397(10288): 1992-2011, 2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-33965066

RESUMO

Approximately 13% of the total UK workforce is employed in the health and care sector. Despite substantial workforce planning efforts, the effectiveness of this planning has been criticised. Education, training, and workforce plans have typically considered each health-care profession in isolation and have not adequately responded to changing health and care needs. The results are persistent vacancies, poor morale, and low retention. Areas of particular concern highlighted in this Health Policy paper include primary care, mental health, nursing, clinical and non-clinical support, and social care. Responses to workforce shortfalls have included a high reliance on foreign and temporary staff, small-scale changes in skill mix, and enhanced recruitment drives. Impending challenges for the UK health and care workforce include growing multimorbidity, an increasing shortfall in the supply of unpaid carers, and the relative decline of the attractiveness of the National Health Service (NHS) as an employer internationally. We argue that to secure a sustainable and fit-for-purpose health and care workforce, integrated workforce approaches need to be developed alongside reforms to education and training that reflect changes in roles and skill mix, as well as the trend towards multidisciplinary working. Enhancing career development opportunities, promoting staff wellbeing, and tackling discrimination in the NHS are all needed to improve recruitment, retention, and morale of staff. An urgent priority is to offer sufficient aftercare and support to staff who have been exposed to high-risk situations and traumatic experiences during the COVID-19 pandemic. In response to growing calls to recognise and reward health and care staff, growth in pay must at least keep pace with projected rises in average earnings, which in turn will require linking future NHS funding allocations to rises in pay. Through illustrative projections, we show that, to sustain annual growth in the workforce at approximately 2·4%, increases in NHS expenditure of 4% annually in real terms will be required. Above all, a radical long-term strategic vision is needed to ensure that the future NHS workforce is fit for purpose.


Assuntos
Política de Saúde , Mão de Obra em Saúde/estatística & dados numéricos , Medicina Estatal/estatística & dados numéricos , COVID-19/psicologia , Ocupações em Saúde/economia , Ocupações em Saúde/educação , Mão de Obra em Saúde/economia , Humanos , Estresse Ocupacional , Seleção de Pessoal , Medicina Estatal/economia , Reino Unido
7.
Am J Respir Crit Care Med ; 201(5): 564-574, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710517

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterized by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defense, telomere maintenance, signaling, and cell-cell adhesion.Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations.Methods: We conducted genome-wide analyses across three independent studies and meta-analyzed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression, and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF.Measurements and Main Results: We identified and replicated three new genome-wide significant (P < 5 × 10-8) signals of association with IPF susceptibility (associated with altered gene expression of KIF15, MAD1L1, and DEPTOR) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as yet unreported IPF susceptibility variants contribute to IPF susceptibility.Conclusions: The observation that decreased DEPTOR expression associates with increased susceptibility to IPF supports recent studies demonstrating the importance of mTOR signaling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility.


Assuntos
Fibrose Pulmonar Idiopática/genética , Idoso , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Feminino , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinesinas/genética , Masculino , Pessoa de Meia-Idade , Medição de Risco , Transdução de Sinais , Fuso Acromático , Serina-Treonina Quinases TOR/metabolismo
8.
Chron Respir Dis ; 18: 14799731211033925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34609156

RESUMO

BACKGROUND: Various patient reported outcome measures (PROMs) are used in idiopathic pulmonary fibrosis (IPF). We aimed to describe their psychometric properties, assess their relationship with 1-year mortality and determine their minimal clinically important differences (MCIDs). METHODS: In a prospective multicentre study, participants with IPF completed the King's Brief Interstitial Lung Disease Questionnaire (K-BILD), the modified Medical Research Council (mMRC) dyspnoea scale, St George's Respiratory Questionnaire (SGRQ) and University of California, San Diego shortness of breath questionnaire (UCSD-SOBQ) three-monthly intervals over a 12-month period. Forced vital capacity (FVC) was matched with questionnaires and mortality was captured. Anchor- and distribution-based methods were used to derive MCID. RESULTS: Data were available from 238 participants. All PROMs had good internal consistency and high degree of correlations with other tools (except UCSD-SOBQ correlated poorly with FVC). There were significant associations with mortality for K-BILD (hazard ratio 16.67; 95% CI 2.38-100) and SGRQ (hazard ratio 4.65; 95% CI 1.32-16.62) but not with the other PROMs or FVC. The median MCID (range) for K-BILD was 6.3 (4.1-7.0), SGRQ was 7.0 (3.8-9.6), mMRC was 0.4 (0.1-0.5) and UCSD-SOBQ was 9.6 (4.1-14.2). CONCLUSIONS: The K-BILD was related to other severity measures and had the strongest relationship with mortality.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/terapia , Medidas de Resultados Relatados pelo Paciente , Estudos Prospectivos , Psicometria , Qualidade de Vida , Inquéritos e Questionários
9.
Am J Respir Crit Care Med ; 200(2): 235-246, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849228

RESUMO

Rationale: Acute respiratory distress syndrome is defined by the presence of systemic hypoxia and consequent on disordered neutrophilic inflammation. Local mechanisms limiting the duration and magnitude of this neutrophilic response remain poorly understood. Objectives: To test the hypothesis that during acute lung inflammation tissue production of proresolution type 2 cytokines (IL-4 and IL-13) dampens the proinflammatory effects of hypoxia through suppression of HIF-1α (hypoxia-inducible factor-1α)-mediated neutrophil adaptation, resulting in resolution of lung injury. Methods: Neutrophil activation of IL4Ra (IL-4 receptor α) signaling pathways was explored ex vivo in human acute respiratory distress syndrome patient samples, in vitro after the culture of human peripheral blood neutrophils with recombinant IL-4 under conditions of hypoxia, and in vivo through the study of IL4Ra-deficient neutrophils in competitive chimera models and wild-type mice treated with IL-4. Measurements and Main Results: IL-4 was elevated in human BAL from patients with acute respiratory distress syndrome, and its receptor was identified on patient blood neutrophils. Treatment of human neutrophils with IL-4 suppressed HIF-1α-dependent hypoxic survival and limited proinflammatory transcriptional responses. Increased neutrophil apoptosis in hypoxia, also observed with IL-13, required active STAT signaling, and was dependent on expression of the oxygen-sensing prolyl hydroxylase PHD2. In vivo, IL-4Ra-deficient neutrophils had a survival advantage within a hypoxic inflamed niche; in contrast, inflamed lung treatment with IL-4 accelerated resolution through increased neutrophil apoptosis. Conclusions: We describe an important interaction whereby IL4Rα-dependent type 2 cytokine signaling can directly inhibit hypoxic neutrophil survival in tissues and promote resolution of neutrophil-mediated acute lung injury.


Assuntos
Lesão Pulmonar Aguda/imunologia , Subunidade alfa de Receptor de Interleucina-4/imunologia , Interleucina-4/imunologia , Neutrófilos/imunologia , Receptores de Superfície Celular/imunologia , Síndrome do Desconforto Respiratório/imunologia , Lesão Pulmonar Aguda/metabolismo , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Subunidade alfa de Receptor de Interleucina-4/genética , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Receptores de Superfície Celular/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
10.
Am J Respir Crit Care Med ; 200(1): 84-97, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649895

RESUMO

Rationale: Antimicrobial resistance challenges therapy of pneumonia. Enhancing macrophage microbicidal responses would combat this problem but is limited by our understanding of how alveolar macrophages (AMs) kill bacteria. Objectives: To define the role and mechanism of AM apoptosis-associated bacterial killing in the lung. Methods: We generated a unique CD68.hMcl-1 transgenic mouse with macrophage-specific overexpression of the human antiapoptotic Mcl-1 protein, a factor upregulated in AMs from patients at increased risk of community-acquired pneumonia, to address the requirement for apoptosis-associated killing. Measurements and Main Results: Wild-type and transgenic macrophages demonstrated comparable ingestion and initial phagolysosomal killing of bacteria. Continued ingestion (for ≥12 h) overwhelmed initial killing, and a second, late-phase microbicidal response killed viable bacteria in wild-type macrophages, but this response was blunted in CD68.hMcl-1 transgenic macrophages. The late phase of bacterial killing required both caspase-induced generation of mitochondrial reactive oxygen species and nitric oxide, the peak generation of which coincided with the late phase of killing. The CD68.hMcl-1 transgene prevented mitochondrial reactive oxygen species but not nitric oxide generation. Apoptosis-associated killing enhanced pulmonary clearance of Streptococcus pneumoniae and Haemophilus influenzae in wild-type mice but not CD68.hMcl-1 transgenic mice. Bacterial clearance was enhanced in vivo in CD68.hMcl-1 transgenic mice by reconstitution of apoptosis with BH3 mimetics or clodronate-encapsulated liposomes. Apoptosis-associated killing was not activated during Staphylococcus aureus lung infection. Conclusions: Mcl-1 upregulation prevents macrophage apoptosis-associated killing and establishes that apoptosis-associated killing is required to allow AMs to clear ingested bacteria. Engagement of macrophage apoptosis should be investigated as a novel, host-based antimicrobial strategy.


Assuntos
Apoptose/fisiologia , Macrófagos Alveolares/fisiologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Fagocitose/genética , Fagossomos/fisiologia , Pneumonia Bacteriana , Animais , Apoptose/efeitos dos fármacos , Bactérias , Compostos de Bifenilo/farmacologia , Caspases/metabolismo , Ácido Clodrônico/farmacologia , Modelos Animais de Doenças , Haemophilus influenzae , Humanos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Óxido Nítrico/metabolismo , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus , Streptococcus pneumoniae , Sulfonamidas/farmacologia
11.
JAMA ; 324(22): 2282-2291, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33289822

RESUMO

Importance: Idiopathic pulmonary fibrosis (IPF) has a poor prognosis and limited treatment options. Patients with IPF have altered lung microbiota, with bacterial burden within the lungs associated with mortality; previous studies have suggested benefit with co-trimoxazole (trimethoprim-sulfamethoxazole). Objective: To determine the efficacy of co-trimoxazole in patients with moderate and severe IPF. Design, Setting, and Participants: Double-blind, placebo-controlled, parallel randomized trial of 342 patients with IPF, breathlessness (Medical Research Council dyspnea scale score >1), and impaired lung function (forced vital capacity ≤75% predicted) conducted in 39 UK specialist interstitial lung disease centers between April 2015 (first patient visit) and April 2019 (last patient follow-up). Interventions: Study participants were randomized to receive 960 mg of oral co-trimoxazole twice daily (n = 170) or matched placebo (n = 172) for between 12 and 42 months. All patients received 5 mg of folic acid orally once daily. Main Outcomes and Measures: The primary outcome was time to death (all causes), lung transplant, or first nonelective hospital admission. There were 15 secondary outcomes, including the individual components of the primary end point respiratory-related events, lung function (forced vital capacity and gas transfer), and patient-reported outcomes (Medical Research Council dyspnea scale, 5-level EuroQol 5-dimension questionnaire, cough severity, Leicester Cough Questionnaire, and King's Brief Interstitial Lung Disease questionnaire scores). Results: Among 342 individuals who were randomized (mean age, 71.3 years; 46 [13%] women), 283 (83%) completed the trial. The median (interquartile range) duration of follow-up was 1.02 (0.35-1.73) years. Events per person-year of follow-up among participants randomized to the co-trimoxazole and placebo groups were 0.45 (84/186) and 0.38 (80/209), respectively, with a hazard ratio of 1.2 ([95% CI, 0.9-1.6]; P = .32). There were no statistically significant differences in other event outcomes, lung function, or patient-reported outcomes. Patients in the co-trimoxazole group had 696 adverse events (nausea [n = 89], diarrhea [n = 52], vomiting [n = 28], and rash [n = 31]) and patients in the placebo group had 640 adverse events (nausea [n = 67], diarrhea [n = 84], vomiting [n = 20], and rash [n = 20]). Conclusions and Relevance: Among patients with moderate or severe IPF, treatment with oral co-trimoxazole did not reduce a composite outcome of time to death, transplant, or nonelective hospitalization compared with placebo. Trial Registration: ISRCTN Identifier: ISRCTN17464641.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Administração Oral , Idoso , Tosse/etiologia , Método Duplo-Cego , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/mortalidade , Transplante de Pulmão , Masculino , Náusea/induzido quimicamente , Gravidade do Paciente , Falha de Tratamento , Combinação Trimetoprima e Sulfametoxazol/efeitos adversos
12.
Eur Respir J ; 54(4)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31320451

RESUMO

Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD.Monocyte-derived macrophages (MDMs) were generated from non-smoker, smoker and COPD subjects, differentiated in either granulocyte macrophage-colony stimulating factor (G-Mφ) or macrophage-colony stimulating factor (M-Mφ). Alveolar macrophages were isolated from lung tissue or bronchoalveolar lavage fluid. Macrophages were incubated in ±200 µM H2O2 for 24 h, then exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, after which phagocytosis, mitochondrial ROS (mROS) and mitochondrial membrane potential (ΔΨm) were measured.Phagocytosis of bacteria was significantly decreased in both G-Mφ and M-Mφ from COPD patients compared with from non-smoker controls. In non-smokers and smokers, bacterial phagocytosis did not alter mROS or ΔΨm; however, in COPD, phagocytosis increased early mROS and decreased ΔΨm in both G-Mφ and M-Mφ. Exogenous oxidative stress reduced phagocytosis in non-smoker and COPD alveolar macrophages and non-smoker MDMs, associated with reduced mROS production.COPD macrophages show defective phagocytosis, which is associated with altered mitochondrial function and an inability to regulate mROS production. Targeting mitochondrial dysfunction may restore the phagocytic defect in COPD.


Assuntos
Macrófagos Alveolares/imunologia , Mitocôndrias/metabolismo , Fagocitose/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Idoso , Bactérias , Sobrevivência Celular , Feminino , Haemophilus influenzae , Humanos , Técnicas In Vitro , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Potencial da Membrana Mitocondrial , Microscopia Confocal , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Streptococcus pneumoniae
13.
Blood ; 130(8): 1014-1025, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28637666

RESUMO

The lifespan of neutrophils is plastic and highly responsive to factors that regulate cellular survival. Defects in neutrophil number and survival are common to both hematologic disorders and chronic inflammatory diseases. At sites of inflammation, neutrophils respond to multiple signals that activate protein kinase A (PKA) signaling, which positively regulates neutrophil survival. The aim of this study was to define transcriptional responses to PKA activation and to delineate the roles of these factors in neutrophil function and survival. In human neutrophil gene array studies, we show that PKA activation upregulates a significant number of apoptosis-related genes, the most highly regulated of these being NR4A2 and NR4A3 Direct PKA activation by the site-selective PKA agonist pair N6/8-AHA (8-AHA-cAMP and N6-MB-cAMP) and treatment with endogenous activators of PKA, including adenosine and prostaglandin E2, results in a profound delay of neutrophil apoptosis and concomitant upregulation of NR4A2/3 in a PKA-dependent manner. NR4A3 expression is also increased at sites of neutrophilic inflammation in a human model of intradermal inflammation. PKA activation also promotes survival of murine neutrophil progenitor cells, and small interfering RNA to NR4A2 decreases neutrophil production in this model. Antisense knockdown of NR4A2 and NR4A3 homologs in zebrafish larvae significantly reduces the absolute neutrophil number without affecting cellular migration. In summary, we show that NR4A2 and NR4A3 are components of a downstream transcriptional response to PKA activation in the neutrophil, and that they positively regulate neutrophil survival and homeostasis.


Assuntos
Neutrófilos/citologia , Neutrófilos/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 3 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Peixe-Zebra/metabolismo , Animais , Contagem de Células , Proliferação de Células , Sobrevivência Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Ativação Enzimática , Deleção de Genes , Técnicas de Silenciamento de Genes , Humanos , Inflamação/patologia , Larva/metabolismo , Camundongos , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transdução de Sinais , Transcrição Gênica
14.
Am J Respir Crit Care Med ; 198(6): 739-750, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29547002

RESUMO

RATIONALE: Previous studies have identified defects in bacterial phagocytosis by alveolar macrophages (AMs) in patients with chronic obstructive pulmonary disease (COPD), but the mechanisms and clinical consequences remain incompletely defined. OBJECTIVES: To examine the effect of COPD on AM phagocytic responses and identify the mechanisms, clinical consequences, and potential for therapeutic manipulation of these defects. METHODS: We isolated AMs and monocyte-derived macrophages (MDMs) from a cohort of patients with COPD and control subjects within the Medical Research Council COPDMAP consortium and measured phagocytosis of bacteria in relation to opsonic conditions and clinical features. MEASUREMENTS AND MAIN RESULTS: COPD AMs and MDMs have impaired phagocytosis of Streptococcus pneumoniae. COPD AMs have a selective defect in uptake of opsonized bacteria, despite the presence of antipneumococcal antibodies in BAL, not observed in MDMs or healthy donor AMs. AM defects in phagocytosis in COPD are significantly associated with exacerbation frequency, isolation of pathogenic bacteria, and health-related quality-of-life scores. Bacterial binding and initial intracellular killing of opsonized bacteria in COPD AMs was not reduced. COPD AMs have reduced transcriptional responses to opsonized bacteria, such as cellular stress responses that include transcriptional modules involving antioxidant defenses and Nrf2 (nuclear factor erythroid 2-related factor 2)-regulated genes. Agonists of the cytoprotective transcription factor Nrf2 (sulforaphane and compound 7) reverse defects in phagocytosis of S. pneumoniae and nontypeable Haemophilus influenzae by COPD AMs. CONCLUSIONS: Patients with COPD have clinically relevant defects in opsonic phagocytosis by AMs, associated with impaired transcriptional responses to cellular stress, which are reversed by therapeutic targeting with Nrf2 agonists.


Assuntos
Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fagocitose/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Isotiocianatos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/fisiologia , Masculino , Pessoa de Meia-Idade , Fagocitose/fisiologia , Streptococcus pneumoniae , Sulfóxidos
15.
Thorax ; 73(11): 1081-1084, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29574419

RESUMO

Acute lung injury is a neutrophil-dominant, life-threatening disease without effective therapies and better understanding of the pathophysiological mechanisms involved is an urgent need. Here we show that interleukin (IL)-22 is produced from innate lymphoid cells (ILC) and is responsible for suppression of experimental lung neutrophilic inflammation. Blocking prostaglandin E2 (PGE2) synthesis reduces lung ILCs and IL-22 production, resulting in exacerbation of lung neutrophilic inflammation. In contrast, activation of the PGE2 receptor EP4 prevents acute lung inflammation. We thus demonstrate a mechanism for production of innate IL-22 in the lung during acute injury, highlighting potential therapeutic strategies for control of lung neutrophilic inflammation by targeting the PGE2/ILC/IL-22 axis.


Assuntos
Dinoprostona/farmacologia , Imunidade Inata/efeitos dos fármacos , Interleucinas/biossíntese , Linfócitos/metabolismo , Pneumonia/prevenção & controle , Animais , Modelos Animais de Doenças , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/imunologia , Pneumonia/metabolismo , Interleucina 22
16.
Thorax ; 73(2): 134-144, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28916704

RESUMO

BACKGROUND: Cystic fibrosis (CF) lung disease is defined by large numbers of neutrophils and associated damaging products in the airway. Delayed neutrophil apoptosis is described in CF although it is unclear whether this is a primary neutrophil defect or a response to chronic inflammation. Increased levels of neutrophil extracellular traps (NETs) have been measured in CF and we aimed to investigate the causal relationship between these phenomena and their potential to serve as a driver of inflammation. We hypothesised that the delay in apoptosis in CF is a primary defect and preferentially allows CF neutrophils to form NETs, contributing to inflammation. METHODS: Blood neutrophils were isolated from patients with CF, CF pigs and appropriate controls. Neutrophils were also obtained from patients with CF before and after commencing ivacaftor. Apoptosis was assessed by morphology and flow cytometry. NET formation was determined by fluorescent microscopy and DNA release assays. NET interaction with macrophages was examined by measuring cytokine generation with ELISA and qRT-PCR. RESULTS: CF neutrophils live longer due to decreased apoptosis. This was observed in both cystic fibrosis transmembrane conductance regulator (CFTR) null piglets and patients with CF, and furthermore was reversed by ivacaftor (CFTR potentiator) in patients with gating (G551D) mutations. CF neutrophils formed more NETs and this was reversed by cyclin-dependent kinase inhibitor exposure. NETs provided a proinflammatory stimulus to macrophages, which was enhanced in CF. CONCLUSIONS: CF neutrophils have a prosurvival phenotype that is associated with an absence of CFTR function and allows increased NET production, which can in turn induce inflammation. Augmenting neutrophil apoptosis in CF may allow more appropriate neutrophil disposal, decreasing NET formation and thus inflammation.


Assuntos
Apoptose/fisiologia , Fibrose Cística/patologia , Armadilhas Extracelulares , Neutrófilos/fisiologia , Adulto , Animais , Estudos de Casos e Controles , Sobrevivência Celular , Fibrose Cística/sangue , Fibrose Cística/imunologia , Humanos , Inflamação , Suínos , Fatores de Tempo
17.
Br Med Bull ; 128(1): 5-14, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137312

RESUMO

Introduction: It has been known for some time that neutrophils are present in the tumour microenvironment, but only recently have their roles been explored. Sources of data: Comprehensive literature search of neutrophils and cancer (PubMed, Google Scholar and CrossRef) for key articles (systematic reviews, meta-analyses, primary research). References from these articles cross-checked for additional relevant studies. Areas of agreement: Neutrophils are a heterogeneous population with both pro- and antitumour roles, and display plasticity. Several neutrophil subpopulations have been identified, defined by a combination of features (density, maturity, surface markers, morphology and anatomical site). Areas of controversy: Limitations in translating murine tumour models to human pathology and paucity of human data. Consensus in defining human neutrophil subpopulations. Growing points: Neutrophils as therapeutic targets and as possible playmakers in the biological response to newer targeted cancer drugs. Areas timely for developing research: Understanding the metabolic programming of neutrophils in the tumour microenvironment.


Assuntos
Neoplasias/imunologia , Neutrófilos/patologia , Microambiente Tumoral/imunologia , Humanos , Imunidade Celular/fisiologia , Neoplasias/patologia , Neutrófilos/imunologia , Transdução de Sinais
18.
Am J Respir Crit Care Med ; 196(7): 845-855, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28557543

RESUMO

RATIONALE: Chronic obstructive pulmonary disease (COPD) is characterized by impaired clearance of pulmonary bacteria. OBJECTIVES: The effect of COPD on alveolar macrophage (AM) microbicidal responses was investigated. METHODS: AMs were obtained from bronchoalveolar lavage from healthy donors or patients with COPD and challenged with opsonized serotype 14 Streptococcus pneumoniae. Cells were assessed for apoptosis, bactericidal activity, and mitochondrial reactive oxygen species (mROS) production. A transgenic mouse line in which the CD68 promoter ensures macrophage-specific expression of human induced myeloid leukemia cell differentiation protein Mcl-1 (CD68.hMcl-1) was used to model the molecular aspects of COPD. MEASUREMENTS AND MAIN RESULTS: COPD AMs had elevated levels of Mcl-1, an antiapoptotic B-cell lymphoma 2 family member, with selective reduction of delayed intracellular bacterial killing. CD68.hMcl-1 AMs phenocopied the microbicidal defect because transgenic mice demonstrated impaired clearance of pulmonary bacteria and increased neutrophilic inflammation. Murine bone marrow-derived macrophages and human monocyte-derived macrophages generated mROS in response to pneumococci, which colocalized with bacteria and phagolysosomes to enhance bacterial killing. The Mcl-1 transgene increased oxygen consumption rates and mROS expression in mock-infected bone marrow-derived macrophages but reduced caspase-dependent mROS production after pneumococcal challenge. COPD AMs also increased basal mROS expression, but they failed to increase production after pneumococcal challenge, in keeping with reduced intracellular bacterial killing. The defect in COPD AM intracellular killing was associated with a reduced ratio of mROS/superoxide dismutase 2. CONCLUSIONS: Up-regulation of Mcl-1 and chronic adaption to oxidative stress alter mitochondrial metabolism and microbicidal function, reducing the delayed phase of intracellular bacterial clearance in COPD.


Assuntos
Anti-Infecciosos/farmacologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Western Blotting , Lavagem Broncoalveolar , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
19.
Nat Rev Immunol ; 7(1): 77-82, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17186032

RESUMO

Although there is overwhelming pressure from funding agencies and the general public for scientists to bridge basic and translational studies, the fact remains that there are significant hurdles to overcome in order to achieve this goal. The purpose of this Opinion article is to examine the nature of these hurdles and to provide food for thought on the main obstacles that impede this process.


Assuntos
Pesquisa Biomédica/tendências , Animais , Pesquisa Biomédica/ética , Pesquisa Biomédica/legislação & jurisprudência , Modelos Animais de Doenças , Humanos
20.
Infect Immun ; 85(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28808156

RESUMO

Staphylococcus aureus is a human commensal but also has devastating potential as an opportunistic pathogen. S. aureus bacteremia is often associated with an adverse outcome. To identify potential targets for novel control approaches, we have identified S. aureus components that are required for growth in human blood. An ordered transposon mutant library was screened, and 9 genes involved specifically in hemolysis or growth on human blood agar were identified by comparing the mutants to the parental strain. Three genes (purA, purB, and pabA) were subsequently found to be required for pathogenesis in the zebrafish embryo infection model. The pabA growth defect was specific to the red blood cell component of human blood, showing no difference from the parental strain in growth in human serum, human plasma, or sheep or horse blood. PabA is required in the tetrahydrofolate (THF) biosynthesis pathway. The pabA growth defect was found to be due to a combination of loss of THF-dependent dTMP production by the ThyA enzyme and increased demand for pyrimidines in human blood. Our work highlights pabA and the pyrimidine salvage pathway as potential targets for novel therapeutics and suggests a previously undefined role for a human blood factor in the activity of sulfonamide antibiotics.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Adenilossuccinato Sintase/genética , Adenilossuccinato Sintase/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Células Sanguíneas/microbiologia , Meios de Cultura/química , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Embrião não Mamífero , Cavalos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ovinos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/mortalidade , Staphylococcus aureus/metabolismo , Análise de Sobrevida , Virulência , Fatores de Virulência/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA