Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 306(4): G301-9, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24356886

RESUMO

Xenin-25 (Xen) is a neurotensin-related peptide secreted by a subset of glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine cells. In animals, Xen regulates gastrointestinal function and glucose homeostasis, typically by initiating neural relays. However, little is known about Xen action in humans. This study determines whether exogenously administered Xen modulates gastric emptying and/or insulin secretion rates (ISRs) following meal ingestion. Fasted subjects with normal (NGT) or impaired (IGT) glucose tolerance and Type 2 diabetes mellitus (T2DM; n = 10-14 per group) ingested a liquid mixed meal plus acetaminophen (ACM; to assess gastric emptying) at time zero. On separate occasions, a primed-constant intravenous infusion of vehicle or Xen at 4 (Lo-Xen) or 12 (Hi-Xen) pmol · kg(-1) · min(-1) was administered from zero until 300 min. Some subjects with NGT received 30- and 90-min Hi-Xen infusions. Plasma ACM, glucose, insulin, C-peptide, glucagon, Xen, GIP, and glucagon-like peptide-1 (GLP-1) levels were measured and ISRs calculated. Areas under the curves were compared for treatment effects. Infusion with Hi-Xen, but not Lo-Xen, similarly delayed gastric emptying and reduced postprandial glucose levels in all groups. Infusions for 90 or 300 min, but not 30 min, were equally effective. Hi-Xen reduced plasma GLP-1, but not GIP, levels without altering the insulin secretory response to glucose. Intense staining for Xen receptors was detected on PGP9.5-positive nerve fibers in the longitudinal muscle of the human stomach. Thus Xen reduces gastric emptying in humans with and without T2DM, probably via a neural relay. Moreover, endogenous GLP-1 may not be a major enhancer of insulin secretion in healthy humans under physiological conditions.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Esvaziamento Gástrico/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Neurotensina/uso terapêutico , Período Pós-Prandial , Adulto , Biomarcadores/sangue , Glicemia/metabolismo , Peptídeo C/sangue , Estudos Cross-Over , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/fisiopatologia , Esquema de Medicação , Feminino , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Humanos , Hipoglicemiantes/administração & dosagem , Infusões Intravenosas , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Missouri , Neurotensina/administração & dosagem , Receptores de Neurotensina/efeitos dos fármacos , Receptores de Neurotensina/metabolismo , Fatores de Tempo , Resultado do Tratamento
2.
Am J Physiol Gastrointest Liver Physiol ; 303(12): G1347-55, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23086920

RESUMO

Xenin-25 (Xen) is a 25 amino acid neurotensin-related peptide reportedly produced with glucose-dependent insulinotropic polypeptide (GIP) by a subset of K cells in the proximal gut. We previously showed exogenously administered Xen, with GIP but not alone, increases insulin secretion in humans and mice. In mice, this effect is indirectly mediated via a central nervous system-independent cholinergic relay in the periphery. Xen also delays gastric emptying, reduces food intake, induces gall bladder contractions, and increases gut motility and secretion from the exocrine pancreas, suggesting that some effects of Xen could be mediated by myenteric neurons (MENs). To determine whether Xen activates these neurons, MENs were isolated from guinea pig proximal small intestines. Cells expressed neuronal markers and exhibited typical neuron-like morphology with extensive outgrowths emanating from cell bodies. Cytosolic free Ca(2+) levels ([Ca(2+)](i)) were measured using Fura-2. ATP/UTP, KCl, and forskolin increased [Ca(2+)](i) in 99.6%, 92%, and 23% of the MENs imaged, respectively, indicating that they are functional and activated by nucleotide receptor signaling, direct depolarization, and cAMP. [Ca(2+)](i) increased in only 12.7% of MENs treated with Xen. This rise was blocked by pretreatment with EGTA, diazoxide, SR48692, and neurotensin. Thus the Xen-mediated increase in [Ca(2+)](i) involves influx of extracellular Ca(2+) and activation of neurotensin receptor-1 (NTSR1). Xen also increased acetylcholine release from MENs. Amylin, produced by ß-and enteroendocrine cells, delays gastric emptying and increased [Ca(2+)](i) almost exclusively in Xen-responsive MENs. Immunohistochemistry demonstrated NTSR1 expression in human duodenal MENs. Thus myenteric rather than central neurons could mediate some effects of Xen and amylin.


Assuntos
Acetilcolina/metabolismo , Cálcio/metabolismo , Intestino Delgado/inervação , Intestino Delgado/metabolismo , Plexo Mientérico/metabolismo , Neurônios/metabolismo , Neurotensina/metabolismo , Animais , Células Cultivadas , Citosol , Feminino , Cobaias , Humanos , Intestino Delgado/efeitos dos fármacos , Masculino , Plexo Mientérico/citologia , Neurotensina/farmacologia , Receptores de Neurotensina/metabolismo
3.
J Biol Chem ; 285(26): 19842-53, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20421298

RESUMO

The intestinal peptides GLP-1 and GIP potentiate glucose-mediated insulin release. Agents that increase GLP-1 action are effective therapies in type 2 diabetes mellitus (T2DM). However, GIP action is blunted in T2DM, and GIP-based therapies have not been developed. Thus, it is important to increase our understanding of the mechanisms of GIP action. We developed mice lacking GIP-producing K cells. Like humans with T2DM, "GIP/DT" animals exhibited a normal insulin secretory response to exogenous GLP-1 but a blunted response to GIP. Pharmacologic doses of xenin-25, another peptide produced by K cells, restored the GIP-mediated insulin secretory response and reduced hyperglycemia in GIP/DT mice. Xenin-25 alone had no effect. Studies with islets, insulin-producing cell lines, and perfused pancreata indicated xenin-25 does not enhance GIP-mediated insulin release by acting directly on the beta-cell. The in vivo effects of xenin-25 to potentiate insulin release were inhibited by atropine sulfate and atropine methyl bromide but not by hexamethonium. Consistent with this, carbachol potentiated GIP-mediated insulin release from in situ perfused pancreata of GIP/DT mice. In vivo, xenin-25 did not activate c-fos expression in the hind brain or paraventricular nucleus of the hypothalamus indicating that central nervous system activation is not required. These data suggest that xenin-25 potentiates GIP-mediated insulin release by activating non-ganglionic cholinergic neurons that innervate the islets, presumably part of an enteric-neuronal-pancreatic pathway. Xenin-25, or molecules that increase acetylcholine receptor signaling in beta-cells, may represent a novel approach to overcome GIP resistance and therefore treat humans with T2DM.


Assuntos
Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/farmacologia , Neurotensina/farmacologia , Animais , Glicemia/metabolismo , Western Blotting , Carbacol/farmacologia , Linhagem Celular Tumoral , Agonistas Colinérgicos/farmacologia , Sinergismo Farmacológico , Ensaio de Imunoadsorção Enzimática , Jejum/sangue , Feminino , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/farmacologia , Humanos , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurotensina/sangue , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo
4.
J Biol Chem ; 284(40): 27664-73, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19654319

RESUMO

There are three types of cell death; apoptosis, necrosis, and autophagy. The possibility that activation of the macroautophagy (autophagy) pathway may increase beta cell death is addressed in this study. Increased autophagy was present in pancreatic islets from Pdx1(+/-) mice with reduced insulin secretion and beta cell mass. Pdx1 expression was reduced in mouse insulinoma 6 (MIN6) cells by delivering small hairpin RNAs using a lentiviral vector. The MIN6 cells died after 7 days of Pdx1 deficiency, and autophagy was evident prior to the onset of cell death. Inhibition of autophagy prolonged cell survival and delayed cell death. Nutrient deprivation increased autophagy in MIN6 cells and mouse and human islets after starvation. Autophagy inhibition partly prevented amino acid starvation-induced MIN6 cell death. The in vivo effects of reduced autophagy were studied by crossing Pdx1(+/-) mice to Becn1(+/-) mice. After 1 week on a high fat diet, 4-week-old Pdx1(+/-) Becn1(+/-) mice showed normal glucose tolerance, preserved beta cell function, and increased beta cell mass compared with Pdx1(+/-) mice. This protective effect of reduced autophagy had worn off after 7 weeks on a high fat diet. Increased autophagy contributes to pancreatic beta cell death in Pdx1 deficiency and following nutrient deprivation. The role of autophagy should be considered in studies of pancreatic beta cell death and diabetes and as a target for novel therapeutic intervention.


Assuntos
Autofagia , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Transativadores/deficiência , Transativadores/metabolismo , Aminoácidos/deficiência , Aminoácidos/farmacologia , Animais , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Meios de Cultura/química , Meios de Cultura/farmacologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Inanição , Transativadores/genética
5.
J Bone Miner Res ; 35(7): 1363-1374, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32155286

RESUMO

The involvement of a gut-bone axis in controlling bone physiology has been long suspected, although the exact mechanisms are unclear. We explored whether glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine K cells were involved in this process. The bone phenotype of transgenic mouse models lacking GIP secretion (GIP-GFP-KI) or enteroendocrine K cells (GIP-DT) was investigated. Mice deficient in GIP secretion exhibited lower bone strength, trabecular bone mass, trabecular number, and cortical thickness, notably due to higher bone resorption. Alterations of microstructure, modifications of bone compositional parameters, represented by lower collagen cross-linking, were also apparent. None of these alterations were observed in GIP-DT mice lacking enteroendocrine K cells, suggesting that another K-cell secretory product acts to counteract GIP action. To assess this, stable analogues of the known K-cell peptide hormones, xenin and GIP, were administered to mature NIH Swiss male mice. Both were capable of modulating bone strength mostly by altering bone microstructure, bone gene expression, and bone compositional parameters. However, the two molecules exhibited opposite actions on bone physiology, with evidence that xenin effects are mediated indirectly, possibly via neural networks. Our data highlight a previously unknown interaction between GIP and xenin, which both moderate gut-bone connectivity. © 2020 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos , Polipeptídeo Inibidor Gástrico , Animais , Osso e Ossos/fisiologia , Masculino , Camundongos , Camundongos Transgênicos
6.
PLoS One ; 13(2): e0192441, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29466430

RESUMO

We previously demonstrated that infusion of an intestinal peptide called xenin-25 (Xen) amplifies the effects of glucose-dependent insulinotropic polypeptide (GIP) on insulin secretion rates (ISRs) and plasma glucagon levels in humans. However, these effects of Xen, but not GIP, were blunted in humans with type 2 diabetes. Thus, Xen rather than GIP signaling to islets fails early during development of type 2 diabetes. The current crossover study determines if cholinergic signaling relays the effects of Xen on insulin and glucagon release in humans as in mice. Fasted subjects with impaired glucose tolerance were studied. On eight separate occasions, each person underwent a single graded glucose infusion- two each with infusion of albumin, Xen, GIP, and GIP plus Xen. Each infusate was administered ± atropine. Heart rate and plasma glucose, insulin, C-peptide, glucagon, and pancreatic polypeptide (PP) levels were measured. ISRs were calculated from C-peptide levels. All peptides profoundly increased PP responses. From 0 to 40 min, peptide(s) infusions had little effect on plasma glucose concentrations. However, GIP, but not Xen, rapidly and transiently increased ISRs and glucagon levels. Both responses were further amplified when Xen was co-administered with GIP. From 40 to 240 min, glucose levels and ISRs continually increased while glucagon concentrations declined, regardless of infusate. Atropine increased resting heart rate and blocked all PP responses but did not affect ISRs or plasma glucagon levels during any of the peptide infusions. Thus, cholinergic signaling mediates the effects of Xen on insulin and glucagon release in mice but not humans.


Assuntos
Glucagon/metabolismo , Intolerância à Glucose/sangue , Insulina/metabolismo , Neurotensina/farmacologia , Polipeptídeo Pancreático/metabolismo , Receptores Colinérgicos/metabolismo , Transdução de Sinais , Adulto , Atropina/administração & dosagem , Atropina/farmacologia , Glicemia/metabolismo , Estudos Cross-Over , Feminino , Polipeptídeo Inibidor Gástrico/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Humanos , Secreção de Insulina , Masculino , Pessoa de Meia-Idade , Neurotensina/administração & dosagem
7.
Transl Res ; 193: 1-12, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29222967

RESUMO

Loss of glucose homeostasis during sepsis is associated with increased organ dysfunction and higher mortality. Novel therapeutic strategies to promote euglycemia in sepsis are needed. We have previously shown that early low-level intravenous (IV) dextrose suppresses pancreatic insulin secretion and induces insulin resistance in septic mice, resulting in profound hyperglycemia and worsened systemic inflammation. In this study, we hypothesized that administration of low-level dextrose via the enteral route would stimulate intestinal incretin hormone production, potentiate insulin secretion in a glucose-dependent manner, and thereby improve glycemic control in the acute phase of sepsis. We administered IV or enteral dextrose to 10-week-old male C57BL/6J mice exposed to bacterial endotoxin and measured incretin hormone release, glucose disposal, and proinflammatory cytokine production. Compared with IV administration, enteral dextrose increased circulating levels of the incretin hormone glucose-dependent insulinotropic peptide (GIP) associated with increased insulin release and insulin sensitivity, improved mean arterial pressure, and decreased proinflammatory cytokines in endotoxemic mice. Exogenous GIP rescued glucose metabolism, improved blood pressure, and increased insulin release in endotoxemic mice receiving IV dextrose, whereas pharmacologic inhibition of GIP signaling abrogated the beneficial effects of enteral dextrose. Thus, stimulation of endogenous GIP secretion by early enteral dextrose maintains glucose homeostasis and attenuates the systemic inflammatory response in endotoxemic mice and may provide a therapeutic target for improving glycemic control and clinical outcomes in patients with sepsis.


Assuntos
Endotoxemia/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Glucose/metabolismo , Homeostase , Incretinas/metabolismo , Inflamação/prevenção & controle , Animais , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
PLoS One ; 11(6): e0156852, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27304975

RESUMO

UNLABELLED: Peripheral muscarinic acetylcholine receptors regulate insulin and glucagon release in rodents but their importance for similar roles in humans is unclear. Bethanechol, an acetylcholine analogue that does not cross the blood-brain barrier, was used to examine the role of peripheral muscarinic signaling on glucose homeostasis in humans with normal glucose tolerance (NGT; n = 10), impaired glucose tolerance (IGT; n = 11), and type 2 diabetes mellitus (T2DM; n = 9). Subjects received four liquid meal tolerance tests, each with a different dose of oral bethanechol (0, 50, 100, or 150 mg) given 60 min before a meal containing acetaminophen. Plasma pancreatic polypeptide (PP), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), glucose, glucagon, C-peptide, and acetaminophen concentrations were measured. Insulin secretion rates (ISRs) were calculated from C-peptide levels. Acetaminophen and PP concentrations were surrogate markers for gastric emptying and cholinergic input to islets. The 150 mg dose of bethanechol increased the PP response 2-fold only in the IGT group, amplified GLP-1 release in the IGT and T2DM groups, and augmented the GIP response only in the NGT group. However, bethanechol did not alter ISRs or plasma glucose, glucagon, or acetaminophen concentrations in any group. Prior studies showed infusion of xenin-25, an intestinal peptide, delays gastric emptying and reduces GLP-1 release but not ISRs when normalized to plasma glucose levels. Analysis of archived plasma samples from this study showed xenin-25 amplified postprandial PP responses ~4-fold in subjects with NGT, IGT, and T2DM. Thus, increasing postprandial cholinergic input to islets augments insulin secretion in mice but not humans. TRIAL REGISTRATION: ClinicalTrials.gov NCT01434901.


Assuntos
Betanecol/farmacologia , Diabetes Mellitus Tipo 2/sangue , Hormônios/sangue , Administração Oral , Adulto , Betanecol/administração & dosagem , Glicemia/metabolismo , Peptídeo C/sangue , Estudos Cross-Over , Diabetes Mellitus Tipo 2/fisiopatologia , Relação Dose-Resposta a Droga , Feminino , Esvaziamento Gástrico/efeitos dos fármacos , Polipeptídeo Inibidor Gástrico/sangue , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Intolerância à Glucose/sangue , Intolerância à Glucose/fisiopatologia , Humanos , Insulina/sangue , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Agonistas Muscarínicos/administração & dosagem , Agonistas Muscarínicos/farmacologia , Neurotensina/administração & dosagem , Neurotensina/farmacologia , Ensaios Clínicos Controlados não Aleatórios como Assunto , Polipeptídeo Pancreático/sangue , Período Pós-Prandial
9.
Peptides ; 82: 76-84, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27288245

RESUMO

Xenin-25 (Xen) is a neurotensin-related peptide secreted by a subset of enteroendocrine cells located in the proximal small intestine. Many effects of Xen are mediated by neurotensin receptor-1 on neurons. In healthy humans with normal glucose tolerance (NGT), Xen administration causes diarrhea and inhibits postprandial glucagon-like peptide-1 (GLP-1) release but not insulin secretion. This study determines (i) if Xen has similar effects in humans with Roux-en-Y gastric bypass (RYGB) and (ii) whether neural pathways potentially mediate effects of Xen on glucose homeostasis. Eight females with RYGB and no history of type 2 diabetes received infusions with 0, 4 or 12pmol Xen/kg/min with liquid meals on separate occasions. Plasma glucose and gastrointestinal hormone levels were measured and insulin secretion rates calculated. Pancreatic polypeptide and neuropeptide Y levels were surrogate markers for parasympathetic input to islets and sympathetic tone, respectively. Responses were compared to those in well-matched non-surgical participants with NGT from our earlier study. Xen similarly increased pancreatic polypeptide and neuropeptide Y responses in patients with and without RYGB. In contrast, the ability of Xen to inhibit GLP-1 release and cause diarrhea was severely blunted in patients with RYGB. With RYGB, Xen had no statistically significant effect on glucose, insulin secretory, GLP-1, glucose-dependent insulinotropic peptide, and glucagon responses. However, insulin and glucose-dependent insulinotropic peptide secretion preceded GLP-1 release suggesting circulating GLP-1 does not mediate exaggerated insulin release after RYGB. Thus, Xen has unmasked neural circuits to the distal gut that inhibit GLP-1 secretion, cause diarrhea, and are altered by RYGB.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diarreia/metabolismo , Insulina/metabolismo , Neurotensina/administração & dosagem , Adolescente , Adulto , Idoso , Glicemia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Diarreia/induzido quimicamente , Diarreia/fisiopatologia , Feminino , Derivação Gástrica/métodos , Polipeptídeo Inibidor Gástrico/metabolismo , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Humanos , Secreção de Insulina , Masculino , Pessoa de Meia-Idade , Neuropeptídeo Y/metabolismo , Neurotensina/efeitos adversos , Neurotensina/metabolismo , Polipeptídeo Pancreático/metabolismo
10.
J Bone Miner Res ; 30(11): 1959-68, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25990470

RESUMO

Teriparatide, a recombinant peptide corresponding to amino acids 1-34 of human parathyroid hormone (PTH), has been an effective bone anabolic drug for over a decade. However, the mechanism whereby PTH stimulates bone formation remains incompletely understood. Here we report that in cultures of osteoblast-lineage cells, PTH stimulates glucose consumption and lactate production in the presence of oxygen, a hallmark of aerobic glycolysis, also known as Warburg effect. Experiments with radioactively labeled glucose demonstrate that PTH suppresses glucose entry into the tricarboxylic acid cycle (TCA cycle). Mechanistically, the increase in aerobic glycolysis is secondary to insulin-like growth factor (Igf) signaling induced by PTH, whereas the metabolic effect of Igf is dependent on activation of mammalian target of rapamycin complex 2 (mTORC2). Importantly, pharmacological perturbation of glycolysis suppresses the bone anabolic effect of intermittent PTH in the mouse. Thus, stimulation of aerobic glycolysis via Igf signaling contributes to bone anabolism in response to PTH.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Glicólise/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Hormônio Paratireóideo/farmacologia , Transdução de Sinais/efeitos dos fármacos , Aerobiose/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Osso e Ossos/diagnóstico por imagem , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , AMP Cíclico/metabolismo , Glucose/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Microtomografia por Raio-X
11.
Diabetes ; 64(4): 1383-94, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25368100

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 are incretins secreted by respective K and L enteroendocrine cells after eating and amplify glucose-stimulated insulin secretion (GSIS). This amplification has been termed the "incretin response." To determine the role(s) of K cells for the incretin response and type 2 diabetes mellitus (T2DM), diphtheria toxin-expressing (DT) mice that specifically lack GIP-producing cells were backcrossed five to eight times onto the diabetogenic NONcNZO10/Ltj background. As in humans with T2DM, DT mice lacked an incretin response, although GLP-1 release was maintained. With high-fat (HF) feeding, DT mice remained lean but developed T2DM, whereas wild-type mice developed obesity but not diabetes. Metabolomics identified biochemicals reflecting impaired glucose handling, insulin resistance, and diabetes complications in prediabetic DT/HF mice. ß-Hydroxypyruvate and benzoate levels were increased and decreased, respectively, suggesting ß-hydroxypyruvate production from d-serine. In vitro, ß-hydroxypyruvate altered excitatory properties of myenteric neurons and reduced islet insulin content but not GSIS. ß-Hydroxypyruvate-to-d-serine ratios were lower in humans with impaired glucose tolerance compared with normal glucose tolerance and T2DM. Earlier human studies unmasked a neural relay that amplifies GIP-mediated insulin secretion in a pattern reciprocal to ß-hydroxypyruvate-to-d-serine ratios in all groups. Thus, K cells may maintain long-term function of neurons and ß-cells by regulating ß-hydroxypyruvate levels.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Enteroendócrinas/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Piruvatos/metabolismo , Animais , Glicemia , Feminino , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Transgênicos
12.
J Histochem Cytochem ; 52(1): 53-63, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14688217

RESUMO

Enteroendocrine cells are a complex population of intestinal epithelial cells whose hormones play critical roles in regulating gastrointestinal and whole-animal physiology. There are many subpopulations of enteroendocrine cells based on the major hormone(s) produced by individual cells. Intracellular calcium plays a critical role in regulating hormone release. Inositol 1,4,5-trisphophate (IP3) receptors regulate calcium mobilization from endoplasmic reticulum-derived calcium stores in many endocrine and excitatory cells and are expressed in the intestine. However, the specific subtypes of enteroendocrine cells that express these receptors have not been reported. Immunohistochemical (IHC) studies revealed that enteroendocrine cells did not express detectable levels of type 2 IP3 receptors, whereas nearly all enteroendocrine cells that produced chromogranin A and/or serotonin expressed type 1 and type 3 IP3 receptors. Conversely, enteroendocrine cells that produced glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1, cholecystokinin, or somatostatin did not express detectable levels of any IP3 receptors. Subsets of enteroendocrine cells that produced substance P or secretin expressed type 1 (33% or 18%, respectively) and type 3 (10% or 62%, respectively) IP3 receptors. Thus, different subtypes of enteroendocrine cells, as well as individual cells that express a particular hormone, exhibit remarkable heterogeneity in the molecular machineries that regulate hormone release in vivo. These results suggest that therapeutic agents can be developed that could potentially inhibit or promote secretion of hormones from specific subtypes of enteroendocrine cells.


Assuntos
Canais de Cálcio/biossíntese , Células Enteroendócrinas/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Animais , Cromogranina A , Cromograninas/biossíntese , Células Enteroendócrinas/citologia , Imunofluorescência/métodos , Polipeptídeo Inibidor Gástrico/biossíntese , Receptores de Inositol 1,4,5-Trifosfato , Intestino Delgado/citologia , Camundongos , Camundongos Endogâmicos C57BL
13.
Regul Pept ; 187: 42-50, 2013 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-24183983

RESUMO

Xenin-25 (Xen) is a 25-amino acid neurotensin-related peptide that activates neurotensin receptor-1 (NTSR1). We previously showed that Xen increases the effect of glucose-dependent insulinotropic polypeptide (GIP) on insulin release 1) in hyperglycemic mice via a cholinergic relay in the periphery independent from the central nervous system and 2) in humans with normal or impaired glucose tolerance, but not type 2 diabetes mellitus (T2DM). Since this blunted response to Xen defines a novel defect in T2DM, it is important to understand how Xen regulates islet physiology. On separate visits, subjects received intravenous graded glucose infusions with vehicle, GIP, Xen, or GIP plus Xen. The pancreatic polypeptide response was used as an indirect measure of cholinergic input to islets. The graded glucose infusion itself had little effect on the pancreatic polypeptide response whereas administration of Xen equally increased the pancreatic polypeptide response in humans with normal glucose tolerance, impaired glucose tolerance, and T2DM. The pancreatic polypeptide response to Xen was similarly amplified by GIP in all 3 groups. Antibody staining of human pancreas showed that NTSR1 is not detectable on islet endocrine cells, sympathetic neurons, blood vessels, or endothelial cells but is expressed at high levels on PGP9.5-positive axons in the exocrine tissue and at low levels on ductal epithelial cells. PGP9.5 positive nerve fibers contacting beta cells in the islet periphery were also observed. Thus, a neural relay, potentially involving muscarinic acetylcholine receptors, indirectly increases the effects of Xen on pancreatic polypeptide release in humans.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Polipeptídeo Inibidor Gástrico/farmacologia , Neurotensina/farmacologia , Pâncreas/inervação , Polipeptídeo Pancreático/metabolismo , Adulto , Glicemia , Estudos de Casos e Controles , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Polipeptídeo Pancreático/sangue , Células Secretoras de Polipeptídeo Pancreático/metabolismo , Receptores de Neurotensina/metabolismo
14.
Diabetes Care ; 36(9): 2530-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23633524

RESUMO

OBJECTIVE: Nonnutritive sweeteners (NNS), such as sucralose, have been reported to have metabolic effects in animal models. However, the relevance of these findings to human subjects is not clear. We evaluated the acute effects of sucralose ingestion on the metabolic response to an oral glucose load in obese subjects. RESEARCH DESIGN AND METHODS: Seventeen obese subjects (BMI 42.3 ± 1.6 kg/m(2)) who did not use NNS and were insulin sensitive (based on a homeostasis model assessment of insulin resistance score ≤ 2.6) underwent a 5-h modified oral glucose tolerance test on two separate occasions preceded by consuming either sucralose (experimental condition) or water (control condition) 10 min before the glucose load in a randomized crossover design. Indices of ß-cell function, insulin sensitivity (SI), and insulin clearance rates were estimated by using minimal models of glucose, insulin, and C-peptide kinetics. RESULTS: Compared with the control condition, sucralose ingestion caused 1) a greater incremental increase in peak plasma glucose concentrations (4.2 ± 0.2 vs. 4.8 ± 0.3 mmol/L; P = 0.03), 2) a 20 ± 8% greater incremental increase in insulin area under the curve (AUC) (P < 0.03), 3) a 22 ± 7% greater peak insulin secretion rate (P < 0.02), 4) a 7 ± 4% decrease in insulin clearance (P = 0.04), and 5) a 23 ± 20% decrease in SI (P = 0.01). There were no significant differences between conditions in active glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, glucagon incremental AUC, or indices of the sensitivity of the ß-cell response to glucose. CONCLUSIONS: These data demonstrate that sucralose affects the glycemic and insulin responses to an oral glucose load in obese people who do not normally consume NNS.


Assuntos
Obesidade/tratamento farmacológico , Sacarose/análogos & derivados , Adulto , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Estudos Cross-Over , Feminino , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Insulina/metabolismo , Masculino , Obesidade/sangue , Obesidade/metabolismo , Sacarose/uso terapêutico
15.
Diabetes ; 61(7): 1793-800, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22522617

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-stimulated insulin secretion (GSIS). This response is blunted in type 2 diabetes (T2DM). Xenin-25 is a 25-amino acid neurotensin-related peptide that amplifies GIP-mediated GSIS in hyperglycemic mice. This study determines if xenin-25 amplifies GIP-mediated GSIS in humans with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), or T2DM. Each fasting subject received graded glucose infusions to progressively raise plasma glucose concentrations, along with vehicle alone, GIP, xenin-25, or GIP plus xenin-25. Plasma glucose, insulin, C-peptide, and glucagon levels and insulin secretion rates (ISRs) were determined. GIP amplified GSIS in all groups. Initially, this response was rapid, profound, transient, and essentially glucose independent. Thereafter, ISRs increased as a function of plasma glucose. Although magnitudes of insulin secretory responses to GIP were similar in all groups, ISRs were not restored to normal in subjects with IGT and T2DM. Xenin-25 alone had no effect on ISRs or plasma glucagon levels, but the combination of GIP plus xenin-25 transiently increased ISR and plasma glucagon levels in subjects with NGT and IGT but not T2DM. Since xenin-25 signaling to islets is mediated by a cholinergic relay, impaired islet responses in T2DM may reflect defective neuronal, rather than GIP, signaling.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Polipeptídeo Inibidor Gástrico/administração & dosagem , Intolerância à Glucose/sangue , Insulina/metabolismo , Neurotensina/administração & dosagem , Adulto , Glicemia/análise , Peptídeo C/sangue , Feminino , Glucagon/sangue , Glucose , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/análise , Humanos , Insulina/sangue , Secreção de Insulina , Masculino , Pessoa de Meia-Idade
17.
Diabetes ; 59(2): 479-85, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19934000

RESUMO

OBJECTIVE: Common variants in the gene TCF7L2 confer the largest effect on the risk of type 2 diabetes. The present study was undertaken to increase our understanding of the mechanisms by which this gene affects type 2 diabetes risk. RESEARCH DESIGN AND METHODS: Eight subjects with risk-conferring TCF7L2 genotypes (TT or TC at rs7903146) and 10 matched subjects with wild-type genotype (CC) underwent 5-h oral glucose tolerance test (OGTT), isoglycemic intravenous glucose infusion, and graded glucose infusion (GGI). Mathematical modeling was used to quantify insulin-secretory profiles during OGTT and glucose infusion protocols. The incretin effect was assessed from ratios of the insulin secretory rates (ISR) during oral and isoglycemic glucose infusions. Dose-response curves relating insulin secretion to glucose concentrations were derived from the GGI. RESULTS: beta-cell responsivity to oral glucose was 50% lower (47 +/- 4 vs. 95 +/- 15 x 10(9) min(-1); P = 0.01) in the group of subjects with risk-conferring TCF7L2 genotypes compared with control subjects. The incretin effect was also reduced by 30% (32 +/- 4 vs. 46 +/- 4%; P = 0.02) in the at-risk group. The lower incretin effect occurred despite similar glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) responses to oral glucose. The ISR response to intravenous glucose over a physiologic glucose concentration range (5-9 mmol/l) was similar between groups. CONCLUSIONS: The TCF7L2 variant rs7903146 appears to affect risk of type 2 diabetes, at least in part, by modifying the effect of incretins on insulin secretion. This is not due to reduced secretion of GLP-1 and GIP but rather due to the effect of TCF7L2 on the sensitivity of the beta-cell to incretins. Treatments that increase incretin sensitivity may decrease the risk of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Variação Genética , Incretinas/fisiologia , Fatores de Transcrição TCF/genética , Glicemia/metabolismo , Composição Corporal , Peptídeo C/sangue , Feminino , Genótipo , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Masculino , Valores de Referência , Medição de Risco , Fatores de Risco , Proteína 2 Semelhante ao Fator 7 de Transcrição
18.
J Clin Invest ; 120(11): 4031-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20978346

RESUMO

Mutations in pancreatic duodenal homeobox (PDX1) are linked to human type 2 diabetes and maturity-onset diabetes of the young type 4. Consistent with this, Pdx1-haploinsufficient mice develop diabetes. Both apoptosis and necrosis of ß cells are mechanistically implicated in diabetes in these mice, but a molecular link between Pdx1 and these 2 forms of cell death has not been defined. In this study, we introduced an shRNA into mouse insulinoma MIN6 cells to deplete Pdx1 and found that expression of proapoptotic genes, including NIP3-like protein X (Nix), was increased. Forced Nix expression in MIN6 and pancreatic islet ß cells induced programmed cell death by simultaneously activating apoptotic and mitochondrial permeability transition-dependent necrotic pathways. Preventing Nix upregulation during Pdx1 suppression abrogated apoptotic and necrotic ß cell death in vitro. In Pdx1-haploinsufficient mice, Nix ablation normalized pancreatic islet architecture, ß cell mass, and insulin secretion and eliminated reactive hyperglycemia after glucose challenge. These results establish Nix as a critical mediator of ß cell apoptosis and programmed necrosis in Pdx1-deficient diabetes.


Assuntos
Apoptose/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Necrose , Transativadores/metabolismo , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Glucose/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Células Secretoras de Insulina/citologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Análise em Microsséries , Proteínas Mitocondriais/genética , Transativadores/genética
19.
J Biol Chem ; 283(26): 18365-76, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18420580

RESUMO

The K cell is a specific sub-type of enteroendocrine cell located in the proximal small intestine that produces glucose-dependent insulinotropic polypeptide (GIP), xenin, and potentially other unknown hormones. Because GIP promotes weight gain and insulin resistance, reducing hormone release from K cells could lead to weight loss and increased insulin sensitivity. However, the consequences of coordinately reducing circulating levels of all K cell-derived hormones are unknown. To reduce the number of functioning K cells, regulatory elements from the rat GIP promoter/gene were used to express an attenuated diphtheria toxin A chain in transgenic mice. K cell number, GIP transcripts, and plasma GIP levels were profoundly reduced in the GIP/DT transgenic mice. Other enteroendocrine cell types were not ablated. Food intake, body weight, and blood glucose levels in response to insulin or intraperitoneal glucose were similar in control and GIP/DT mice fed standard chow. In contrast to single or double incretin receptor knock-out mice, the incretin response was absent in GIP/DT animals suggesting K cells produce GIP plus an additional incretin hormone. Following high fat feeding for 21-35 weeks, the incretin response was partially restored in GIP/DT mice. Transgenic versus wild-type mice demonstrated significantly reduced body weight (25%), plasma leptin levels (77%), and daily food intake (16%) plus enhanced energy expenditure (10%) and insulin sensitivity. Regardless of diet, long term glucose homeostasis was not grossly perturbed in the transgenic animals. In conclusion, studies using GIP/DT mice demonstrate an important role for K cells in the regulation of body weight and insulin sensitivity.


Assuntos
Resistência à Insulina/genética , Ração Animal , Animais , Gorduras na Dieta , Polipeptídeo Inibidor Gástrico/genética , Teste de Tolerância a Glucose , Incretinas/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Obesidade/genética , Obesidade/metabolismo , Regiões Promotoras Genéticas , Ratos , Fatores de Tempo , Transgenes
20.
Am J Physiol Endocrinol Metab ; 288(1): E208-15, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15383372

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) regulates glucose homeostasis and high-fat diet-induced obesity and insulin resistance. Therefore, elucidating the mechanisms that regulate GIP release is important. GIP is produced by K cells, a specific subtype of small intestinal enteroendocrine (EE) cell. Bombesin-like peptides produced by enteric neurons and luminal nutrients stimulate GIP release in vivo. We previously showed that PMA, bombesin, meat hydrolysate, glyceraldehyde, and methylpyruvate increase hormone release from a GIP-producing EE cell line (GIP/Ins cells). Here we demonstrate that bombesin and nutrients additively stimulate hormone release from GIP/Ins cells. In various cell systems, bombesin and PMA regulate cell physiology by activating PKD signaling in a PKC-dependent fashion, whereas nutrients regulate cell physiology by inhibiting AMPK signaling. Western blot analyses of GIP/Ins cells using antibodies specific for activated and/or phosphorylated forms of PKD and AMPK and one substrate for each kinase revealed that bombesin and PMA, but not nutrients, activated PKC, but not PKD. Conversely, nutrients, but not bombesin or PMA, inhibited AMPK activity. Pharmacological studies showed that PKC inhibition blocked bombesin- and PMA-stimulated hormone release, but AMPK activation failed to suppress nutrient-stimulated hormone secretion. Forced expression of constitutively active vs. dominant negative PKDs or AMPKs failed to perturb bombesin- or nutrient-stimulated hormone release. Thus, in GIP/Ins cells, PKC regulates bombesin-stimulated hormone release, whereas nutrients may control hormone release by regulating the activity of AMPK-related kinases, rather than AMPK itself. These results strongly suggest that K cells in vivo independently respond to neuronal vs. nutritional stimuli via two distinct signaling pathways.


Assuntos
Bombesina/farmacologia , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Hidrolisados de Proteína/farmacologia , Adenilato Quinase/metabolismo , Carcinógenos/farmacologia , Células Cultivadas , Sinergismo Farmacológico , Células Enteroendócrinas/citologia , Humanos , Insulina/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA