RESUMO
The human hippocampus and prefrontal cortex play critical roles in learning and cognition1,2, yet the dynamic molecular characteristics of their development remain enigmatic. Here we investigated the epigenomic and three-dimensional chromatin conformational reorganization during the development of the hippocampus and prefrontal cortex, using more than 53,000 joint single-nucleus profiles of chromatin conformation and DNA methylation generated by single-nucleus methyl-3C sequencing (snm3C-seq3)3. The remodelling of DNA methylation is temporally separated from chromatin conformation dynamics. Using single-cell profiling and multimodal single-molecule imaging approaches, we have found that short-range chromatin interactions are enriched in neurons, whereas long-range interactions are enriched in glial cells and non-brain tissues. We reconstructed the regulatory programs of cell-type development and differentiation, finding putatively causal common variants for schizophrenia strongly overlapping with chromatin loop-connected, cell-type-specific regulatory regions. Our data provide multimodal resources for studying gene regulatory dynamics in brain development and demonstrate that single-cell three-dimensional multi-omics is a powerful approach for dissecting neuropsychiatric risk loci.
RESUMO
The UCSC Genome Browser (https://genome.ucsc.edu) is a web-based genomic visualization and analysis tool that serves data to over 7,000 distinct users per day worldwide. It provides annotation data on thousands of genome assemblies, ranging from human to SARS-CoV2. This year, we have introduced new data from the Human Pangenome Reference Consortium and on viral genomes including SARS-CoV2. We have added 1,200 new genomes to our GenArk genome system, increasing the overall diversity of our genomic representation. We have added support for nine new user-contributed track hubs to our public hub system. Additionally, we have released 29 new tracks on the human genome and 11 new tracks on the mouse genome. Collectively, these new features expand both the breadth and depth of the genomic knowledge that we share publicly with users worldwide.
Assuntos
Bases de Dados Genéticas , Genômica , RNA Viral , Animais , Humanos , Camundongos , Genoma Humano , Genoma Viral , Internet , Anotação de Sequência Molecular , SoftwareRESUMO
The UCSC Genome Browser (https://genome.ucsc.edu) is an omics data consolidator, graphical viewer, and general bioinformatics resource that continues to serve the community as it enters its 23rd year. This year has seen an emphasis in clinical data, with new tracks and an expanded Recommended Track Sets feature on hg38 as well as the addition of a single cell track group. SARS-CoV-2 continues to remain a focus, with regular annotation updates to the browser and continued curation of our phylogenetic sequence placing tool, hgPhyloPlace, whose tree has now reached over 12M sequences. Our GenArk resource has also grown, offering over 2500 hubs and a system for users to request any absent assemblies. We have expanded our bigBarChart display type and created new ways to visualize data via bigRmsk and dynseq display. Displaying custom annotations is now easier due to our chromAlias system which eliminates the requirement for renaming sequence names to the UCSC standard. Users involved in data generation may also be interested in our new tools and trackDb settings which facilitate the creation and display of their custom annotations.
Assuntos
Bases de Dados Genéticas , Genômica , Humanos , COVID-19/epidemiologia , COVID-19/genética , Genômica/métodos , Internet , Filogenia , SARS-CoV-2/genética , Software , NavegadorRESUMO
BACKGROUND: The recent combination of genomics and single cell transcriptomics has allowed to assess a variety of non-conventional model organisms in much more depth. Single cell transcriptomes can uncover hidden cellular complexity and cell lineage relationships within organisms. The recent developmental cell atlases of the sea anemone Nematostella vectensis, a representative of the basally branching Cnidaria, has provided new insights into the development of all cell types (Steger et al Cell Rep 40(12):111370, 2022; Sebé-Pedrós et al. Cell 173(6):1520-1534.e20). However, the mapping of the single cell reads still suffers from relatively poor gene annotations and a draft genome consisting of many scaffolds. RESULTS: Here we present a new wildtype resource of the developmental single cell atlas, by re-mapping of sequence data first published in Steger et al. (2022) and Cole et al. (Nat Commun 14(1):1747, 2023), to the new chromosome-level genome assembly and corresponding gene models in Zimmermann et al. (Nat Commun 14, 8270 (2023). https://doi.org/10.1038/s41467-023-44080-7 ). We expand the pre-existing dataset through the incorporation of additional sequence data derived from the capture and sequencing of cell suspensions from four additional samples: 24 h gastrula, 2d planula, an inter-parietal region of the bodywall from a young unsexed animal, and another adult mesentery from a mature male animal. CONCLUSION: Our analyses of the full cell-state inventory provide transcriptomic signatures for 127 distinct cell states, of which 47 correspond to neuroglandular subtypes. We also identify two distinct putatively immune-related transcriptomic profiles that segregate between the inner and outer cell layers. Furthermore, the new gene annotation Nv2 has markedly improved the mapping on the single cell transcriptome data and will therefore be of great value for the community and anyone using the dataset.
RESUMO
The UCSC Genome Browser, https://genome.ucsc.edu, is a graphical viewer for exploring genome annotations. The website provides integrated tools for visualizing, comparing, analyzing, and sharing both publicly available and user-generated genomic datasets. Data highlights this year include a collection of easily accessible public hub assemblies on new organisms, now featuring BLAT alignment and PCR capabilities, and new and updated clinical tracks (gnomAD, DECIPHER, CADD, REVEL). We introduced a new Track Sets feature and enhanced variant displays to aid in the interpretation of clinical data. We also added a tool to rapidly place new SARS-CoV-2 genomes in a global phylogenetic tree enabling researchers to view the context of emerging mutations in our SARS-CoV-2 Genome Browser. Other new software focuses on usability features, including more informative mouseover displays and new fonts.
Assuntos
Bases de Dados Genéticas , Navegador , Animais , Genoma Humano , Humanos , Filogenia , Reação em Cadeia da Polimerase , SARS-CoV-2/genética , Interface Usuário-Computador , Sequenciamento do ExomaRESUMO
To elucidate the aging-associated cellular population dynamics throughout the body, here we present PanSci, a single-cell transcriptome atlas profiling over 20 million cells from 623 mouse tissue samples, encompassing a range of organs across different life stages, sexes, and genotypes. This comprehensive dataset allowed us to identify more than 3,000 unique cellular states and catalog over 200 distinct aging-associated cell populations experiencing significant depletion or expansion. Our panoramic analysis uncovered temporally structured, organ- and lineage-specific shifts of cellular dynamics during lifespan progression. Moreover, we investigated aging-associated alterations in immune cell populations, revealing both widespread shifts and organ-specific changes. We further explored the regulatory roles of the immune system on aging and pinpointed specific age-related cell population expansions that are lymphocyte-dependent. The breadth and depth of our 'cell-omics' methodology not only enhance our comprehension of cellular aging but also lay the groundwork for exploring the complex regulatory networks among varied cell types in the context of aging and aging-associated diseases.
RESUMO
Glioblastoma (GBM) is the deadliest form of primary brain tumor with limited treatment options. Recent studies have profiled GBM tumor heterogeneity, revealing numerous axes of variation that explain the molecular and spatial features of the tumor. Here, we seek to bridge descriptive characterization of GBM cell type heterogeneity with the functional role of individual populations within the tumor. Our lens leverages a gene program-centric meta-atlas of published transcriptomic studies to identify commonalities between diverse tumors and cell types in order to decipher the mechanisms that drive them. This approach led to the discovery of a tumor-derived stem cell population with mixed vascular and neural stem cell features, termed a neurovascular progenitor (NVP). Following in situ validation and molecular characterization of NVP cells in GBM patient samples, we characterized their function in vivo. Genetic depletion of NVP cells resulted in altered tumor cell composition, fewer cycling cells, and extended survival, underscoring their critical functional role. Clonal analysis of primary patient tumors in a human organoid tumor transplantation system demonstrated that the NVP has dual potency, generating both neuronal and vascular tumor cells. Although NVP cells comprise a small fraction of the tumor, these clonal analyses demonstrated that they strongly contribute to the total number of cycling cells in the tumor and generate a defined subset of the whole tumor. This study represents a paradigm by which cell type-specific interrogation of tumor populations can be used to study functional heterogeneity and therapeutically targetable vulnerabilities of GBM.
RESUMO
Inclusion body myositis (IBM) is the most prevalent inflammatory muscle disease in older adults with no effective therapy available. In contrast to other inflammatory myopathies such as subacute, immune-mediated necrotizing myopathy (IMNM), IBM follows a chronic disease course with both inflammatory and degenerative features of pathology. Moreover, causal factors and molecular drivers of IBM progression are largely unknown. Therefore, we paired single-nucleus RNA sequencing with spatial transcriptomics from patient muscle biopsies to map cell-type-specific drivers underlying IBM pathogenesis compared with IMNM muscles and noninflammatory skeletal muscle samples. In IBM muscles, we observed a selective loss of type 2 myonuclei paralleled by increased levels of cytotoxic T and conventional type 1 dendritic cells. IBM myofibers were characterized by either upregulation of cell stress markers featuring GADD45A and NORAD or protein degradation markers including RNF7 associated with p62 aggregates. GADD45A upregulation was preferentially seen in type 2A myofibers associated with severe tissue inflammation. We also noted IBM-specific upregulation of ACHE encoding acetylcholinesterase, which can be regulated by NORAD activity and result in functional denervation of myofibers. Our results provide promising insights into possible mechanisms of myofiber degeneration in IBM and suggest a selective type 2 fiber vulnerability linked to genomic stress and denervation pathways.
Assuntos
Miosite de Corpos de Inclusão , Humanos , Miosite de Corpos de Inclusão/patologia , Miosite de Corpos de Inclusão/metabolismo , Miosite de Corpos de Inclusão/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/metabolismo , Masculino , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Idoso , Inflamação/patologia , Inflamação/metabolismo , Inflamação/genética , Células Dendríticas/patologia , Células Dendríticas/metabolismo , Proteínas GADD45RESUMO
Human brain development requires the generation of hundreds of diverse cell types, a process targeted by recent single-cell transcriptomic profiling efforts. Through a meta-analysis of seven of these published datasets, we have generated 225 meta-modules - gene co-expression networks that can describe mechanisms underlying cortical development. Several meta-modules have potential roles in both establishing and refining cortical cell type identities, and we validated their spatiotemporal expression in primary human cortical tissues. These include meta-module 20, associated with FEZF2+ deep layer neurons. Half of meta-module 20 genes are putative FEZF2 targets, including TSHZ3, a transcription factor associated with neurodevelopmental disorders. Human cortical organoid experiments validated that both factors are necessary for deep layer neuron specification. Importantly, subtle manipulations of these factors drive slight changes in meta-module activity that cascade into strong differences in cell fate - demonstrating how of our meta-atlas can engender further mechanistic analyses of cortical fate specification.
RESUMO
We analyzed >700,000 single-nucleus RNA sequencing profiles from 106 donors during prenatal and postnatal developmental stages and identified lineage-specific programs that underlie the development of specific subtypes of excitatory cortical neurons, interneurons, glial cell types, and brain vasculature. By leveraging single-nucleus chromatin accessibility data, we delineated enhancer gene regulatory networks and transcription factors that control commitment of specific cortical lineages. By intersecting our results with genetic risk factors for human brain diseases, we identified the cortical cell types and lineages most vulnerable to genetic insults of different brain disorders, especially autism. We find that lineage-specific gene expression programs up-regulated in female cells are especially enriched for the genetic risk factors of autism. Our study captures the molecular progression of cortical lineages across human development.
Assuntos
Encefalopatias , Córtex Cerebral , Neurônios , Feminino , Humanos , Recém-Nascido , Gravidez , Encefalopatias/genética , Córtex Cerebral/crescimento & desenvolvimento , Redes Reguladoras de Genes , Interneurônios/metabolismo , Neurônios/metabolismo , Análise de Célula Única , Masculino , Fatores de RiscoRESUMO
Interactive graphical genome browsers are essential tools for biologists working with DNA sequences. Although tens of thousands of new genome assemblies have become available over the last decade, accessibility is limited by the work involved in manually creating browsers and curating annotations. The results can push the limits of data storage infrastructure. To facilitate managing this increasing number of genome assemblies, we created the Genome Archive (GenArk) collection of UCSC Genome Browsers from assemblies hosted at NCBI(1). Built on our established assembly hub system, this collection enables fast, on-demand visualization of chromosome regions without requiring a database server. Available annotations include gene models, some mapped through whole-genome alignments, repeat masks, GC content, and others. We also modified our popular BLAT(2) aligner and in-silico PCR to support a large number of genomes using limited RAM. Users can upload additional annotations themselves via track hubs(3) and custom tracks. We can import more annotations in bulk from third-party resources, demonstrated here with TOGA(4) gene models. 2,430 GenArk assemblies are listed at https://hgdownload.soe.ucsc.edu/hubs/ and can be found by searching on the main UCSC gateway page. We will continue to add human high-quality assemblies and for other organisms, we are looking forward to receiving requests from the research community for ever more browsers and whole-genome alignments via http://genome.ucsc.edu/assemblyRequest.html.
RESUMO
Interactive graphical genome browsers are essential tools in genomics, but they do not contain all the recent genome assemblies. We create Genome Archive (GenArk) collection of UCSC Genome Browsers from NCBI assemblies. Built on our established track hub system, this enables fast visualization of annotations. Assemblies come with gene models, repeat masks, BLAT, and in silico PCR. Users can add annotations via track hubs and custom tracks. We can bulk-import third-party resources, demonstrated with TOGA and Ensembl gene models for hundreds of assemblies.Three thousand two hundred sixty-nine GenArk assemblies are listed at https://hgdownload.soe.ucsc.edu/hubs/ and can be searched for on the Genome Browser gateway page.