Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Neurol ; 95(4): 720-732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38086777

RESUMO

OBJECTIVE: To investigate accumulation of disability in neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) in a changing treatment landscape. We aimed to identify risk factors for the development of disability milestones in relation to disease duration, number of attacks, and age. METHODS: We analyzed data from individuals with NMOSD and MOGAD from the German Neuromyelitis Optica Study Group registry. Applying survival analyses, we estimated risk factors and computed time to disability milestones as defined by the Expanded Disability Status Score (EDSS). RESULTS: We included 483 patients: 298 AQP4-IgG+ NMOSD, 52 AQP4-IgG-/MOG-IgG- NMOSD patients, and 133 patients with MOGAD. Despite comparable annualized attack rates, disability milestones occurred earlier and after less attacks in NMOSD patients than MOGAD patients (median time to EDSS 3: AQP4-IgG+ NMOSD 7.7 (95% CI 6.6-9.6) years, AQP4-IgG-/MOG-IgG- NMOSD 8.7) years, MOGAD 14.1 (95% CI 10.4-27.6) years; EDSS 4: 11.9 (95% CI 9.7-14.7), 11.6 (95% lower CI 7.6) and 20.4 (95% lower CI 14.1) years; EDSS 6: 20.1 (95% CI 16.5-32.1), 20.7 (95% lower CI 11.6), and 37.3 (95% lower CI 29.4) years; and EDSS 7: 34.2 (95% lower CI 31.1) for AQP4-IgG+ NMOSD). Higher age at onset increased the risk for all disability milestones, while risk of disability decreased over time. INTERPRETATION: AQP4-IgG+ NMOSD, AQP4-IgG-/MOG-IgG- NMOSD, and MOGAD patients show distinctive relapse-associated disability progression, with MOGAD having a less severe disease course. Investigator-initiated research has led to increasing awareness and improved treatment strategies appearing to ameliorate disease outcomes for NMOSD and MOGAD. ANN NEUROL 2024;95:720-732.


Assuntos
Neuromielite Óptica , Humanos , Aquaporina 4 , Glicoproteína Mielina-Oligodendrócito , Autoanticorpos , Imunoglobulina G , Recidiva
2.
Mol Ther ; 32(7): 2113-2129, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38788710

RESUMO

Sepsis-associated encephalopathy (SAE) is a frequent complication of severe systemic infection resulting in delirium, premature death, and long-term cognitive impairment. We closely mimicked SAE in a murine peritoneal contamination and infection (PCI) model. We found long-lasting synaptic pathology in the hippocampus including defective long-term synaptic plasticity, reduction of mature neuronal dendritic spines, and severely affected excitatory neurotransmission. Genes related to synaptic signaling, including the gene for activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and members of the transcription-regulatory EGR gene family, were downregulated. At the protein level, ARC expression and mitogen-activated protein kinase signaling in the brain were affected. For targeted rescue we used adeno-associated virus-mediated overexpression of ARC in the hippocampus in vivo. This recovered defective synaptic plasticity and improved memory dysfunction. Using the enriched environment paradigm as a non-invasive rescue intervention, we found improvement of defective long-term potentiation, memory, and anxiety. The beneficial effects of an enriched environment were accompanied by an increase in brain-derived neurotrophic factor (BDNF) and ARC expression in the hippocampus, suggesting that activation of the BDNF-TrkB pathway leads to restoration of the PCI-induced reduction of ARC. Collectively, our findings identify synaptic pathomechanisms underlying SAE and provide a conceptual approach to target SAE-induced synaptic dysfunction with potential therapeutic applications to patients with SAE.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Hipocampo , Plasticidade Neuronal , Encefalopatia Associada a Sepse , Animais , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/genética , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/etiologia , Encefalopatia Associada a Sepse/terapia , Encefalopatia Associada a Sepse/genética , Hipocampo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dependovirus/genética , Masculino , Potenciação de Longa Duração , Receptor trkB/metabolismo , Receptor trkB/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Sinapses/metabolismo
3.
Glia ; 72(8): 1484-1500, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38780213

RESUMO

Microglia are innate immune cells in the brain and show exceptional heterogeneity. They are key players in brain physiological development regulating synaptic plasticity and shaping neuronal networks. In pathological disease states, microglia-induced synaptic pruning mediates synaptic loss and targeting microglia was proposed as a promising therapeutic strategy. However, the effect of microglia depletion and subsequent repopulation on dendritic spine density and neuronal function in the adult brain is largely unknown. In this study, we investigated whether pharmacological microglia depletion affects dendritic spine density after long-term permanent microglia depletion and after short-term microglia depletion with subsequent repopulation. Long-term microglia depletion using colony-stimulating-factor-1 receptor (CSF1-R) inhibitor PLX5622 resulted in increased overall spine density, especially of mushroom spines, and increased excitatory postsynaptic current amplitudes. Short-term PLX5622 treatment with subsequent repopulation of microglia had an opposite effect resulting in activated microglia with increased synaptic phagocytosis and consequently decreased spine density and reduced excitatory neurotransmission, while Barnes maze and elevated plus maze testing was unaffected. Moreover, RNA sequencing data of isolated repopulated microglia showed an activated and proinflammatory phenotype. Long-term microglia depletion might be a promising therapeutic strategy in neurological diseases with pathological microglial activation, synaptic pruning, and synapse loss. However, repopulation after depletion induces activated microglia and results in a decrease of dendritic spines possibly limiting the therapeutic application of microglia depletion. Instead, persistent modulation of pathological microglia activity might be beneficial in controlling synaptic damage.


Assuntos
Encéfalo , Espinhas Dendríticas , Camundongos Endogâmicos C57BL , Microglia , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Masculino , Camundongos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Fagocitose/fisiologia , Fagocitose/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Camundongos Transgênicos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Compostos Orgânicos
4.
Mol Psychiatry ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875549

RESUMO

Decreased hippocampal connectivity and disruption of functional networks are established resting-state functional MRI (rs-fMRI) features that are associated with neuropsychiatric symptom severity in human anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. However, the underlying pathophysiology of NMDAR encephalitis remains poorly understood. Application of patient-derived monoclonal antibodies against the NR1 (GluN1) subunit of the NMDAR now allows for the translational investigation of functional connectivity in experimental murine NMDAR antibody disease models with neurodevelopmental disorders. Using rs-fMRI, we studied functional connectivity alterations in (1) adult C57BL/6 J mice that were intrathecally injected with a recombinant human NR1 antibody over 14 days (n = 10) and in (2) a newly established mouse model with in utero exposure to a human recombinant NR1 antibody (NR1-offspring) at the age of (2a) 8 weeks (n = 15) and (2b) 10 months (n = 14). Adult NR1-antibody injected mice showed impaired functional connectivity within the left hippocampus compared to controls, resembling impaired connectivity patterns observed in human NMDAR encephalitis patients. Similarly, NR1-offspring showed significantly reduced functional connectivity in the hippocampus after 8 weeks, and impaired connectivity in the hippocampus was likewise observed in NR1-offspring at the age of 10 months. We successfully reproduced functional connectivity changes within the hippocampus in different experimental murine systems that were previously observed in human NMDAR encephalitis patients. Translational application of this method within a combined imaging and histopathological framework will allow future experimental studies to identify the underlying biological mechanisms and may eventually facilitate non-invasive monitoring of disease activity and treatment responses in autoimmune encephalitis.

5.
Brain ; 146(2): 600-611, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35259208

RESUMO

Anti-IgLON5 disease is a newly defined clinical entity characterized by a progressive course with high disability and mortality rate. While precise pathogenetic mechanisms remain unclear, features characteristic of both autoimmune and neurodegenerative diseases were reported. Data on immunotherapy are limited, and its efficacy remains controversial. In this study, we retrospectively investigated an anti-IgLON5 disease cohort with special focus on clinical, serological and genetic predictors of the immunotherapy response and long-term outcome. Patients were recruited from the GENERATE (German Network for Research on Autoimmune Encephalitis) registry. Along with clinical parameters, anti-IgLON5 immunoglobulin (Ig)G in serum and CSF, anti-IgLON5 IgG1-4, IgA and IgM in serum, neurofilament light chain and glial fibrillary acidic protein in serum as well as human leukocyte antigen-genotypes were determined. We identified 53 patients (symptom onset 63.8 ± 10.3 years, female:male 1:1.5). The most frequent initial clinical presentations were bulbar syndrome, hyperkinetic syndrome or isolated sleep disorder [at least one symptom present in 38% (20/53)]. At the time of diagnosis, the majority of patients had a generalized multi-systemic phenotype; nevertheless, 21% (11/53) still had an isolated brainstem syndrome and/or a characteristic sleep disorder only. About one third of patients [28% (15/53)] reported subacute disease onset and 51% (27/53) relapse-like exacerbations during the disease course. Inflammatory CSF changes were evident in 37% (19/51) and increased blood-CSF-barrier permeability in 46% (21/46). CSF cell count significantly decreased, while serum anti-IgLON5 IgG titre increased with disease duration. The presence of human leukocyte antigen-DRB1*10:01 [55% (24/44)] was associated with higher serum anti-IgLON5 IgG titres. Neurofilament light chain and glial fibrillary acidic protein in serum were substantially increased (71.1 ± 103.9 pg/ml and 126.7 ± 73.3 pg/ml, respectively). First-line immunotherapy of relapse-like acute-to-subacute exacerbation episodes resulted in improvement in 41% (11/27) of patients and early initiation within the first 6 weeks was a predictor for therapy response. Sixty-eight per cent (36/53) of patients were treated with long-term immunotherapy and 75% (27/36) of these experienced no further disease progression (observation period of 20.2 ± 15.4 months). Long-term immunotherapy initiation during the first year after onset and low pre-treatment neurofilament light chain were significant predictors for a better outcome. In conclusion, subacute disease onset and early inflammatory CSF changes support the primary role of autoimmune mechanisms at least at initial stages of anti-IgLON5 disease. Early immunotherapy, prior to advanced neurodegeneration, is associated with a better long-term clinical outcome. Low serum neurofilament light chain at treatment initiation may serve as a potential biomarker of the immunotherapy response.


Assuntos
Transtornos do Sono-Vigília , Humanos , Masculino , Feminino , Proteína Glial Fibrilar Ácida , Estudos Retrospectivos , Imunoglobulina G/metabolismo , Progressão da Doença , Imunoterapia
6.
Brain ; 146(3): 977-990, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35348614

RESUMO

Autoimmune neurological syndromes (AINS) with autoantibodies against the 65 kDa isoform of the glutamic acid decarboxylase (GAD65) present with limbic encephalitis, including temporal lobe seizures or epilepsy, cerebellitis with ataxia, and stiff-person-syndrome or overlap forms. Anti-GAD65 autoantibodies are also detected in autoimmune diabetes mellitus, which has a strong genetic susceptibility conferred by human leukocyte antigen (HLA) and non-HLA genomic regions. We investigated the genetic predisposition in patients with anti-GAD65 AINS. We performed a genome-wide association study (GWAS) and an association analysis of the HLA region in a large German cohort of 1214 individuals. These included 167 patients with anti-GAD65 AINS, recruited by the German Network for Research on Autoimmune Encephalitis (GENERATE), and 1047 individuals without neurological or endocrine disease as population-based controls. Predictions of protein expression changes based on GWAS findings were further explored and validated in the CSF proteome of a virtually independent cohort of 10 patients with GAD65-AINS and 10 controls. Our GWAS identified 16 genome-wide significant (P < 5 × 10-8) loci for the susceptibility to anti-GAD65 AINS. The top variant, rs2535288 [P = 4.42 × 10-16, odds ratio (OR) = 0.26, 95% confidence interval (CI) = 0.187-0.358], localized to an intergenic segment in the middle of the HLA class I region. The great majority of variants in these loci (>90%) mapped to non-coding regions of the genome. Over 40% of the variants have known regulatory functions on the expression of 48 genes in disease relevant cells and tissues, mainly CD4+ T cells and the cerebral cortex. The annotation of epigenomic marks suggested specificity for neural and immune cells. A network analysis of the implicated protein-coding genes highlighted the role of protein kinase C beta (PRKCB) and identified an enrichment of numerous biological pathways participating in immunity and neural function. Analysis of the classical HLA alleles and haplotypes showed no genome-wide significant associations. The strongest associations were found for the DQA1*03:01-DQB1*03:02-DRB1*04:01HLA haplotype (P = 4.39 × 10-4, OR = 2.5, 95%CI = 1.499-4.157) and DRB1*04:01 allele (P = 8.3 × 10-5, OR = 2.4, 95%CI = 1.548-3.682) identified in our cohort. As predicted, the CSF proteome showed differential levels of five proteins (HLA-A/B, C4A, ATG4D and NEO1) of expression quantitative trait loci genes from our GWAS in the CSF proteome of anti-GAD65 AINS. These findings suggest a strong genetic predisposition with direct functional implications for immunity and neural function in anti-GAD65 AINS, mainly conferred by genomic regions outside the classical HLA alleles.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Predisposição Genética para Doença/genética , Proteoma/genética , Antígenos de Histocompatibilidade Classe II , Antígenos HLA , Haplótipos , Alelos , Autoanticorpos , Cadeias HLA-DRB1/genética
7.
J Neuroinflammation ; 20(1): 289, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041192

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) is characterized by symptoms of delirium including hallucinations, impaired concentration, agitation, or coma and is associated with poor outcome in the early phase of sepsis. In addition, sepsis survivors often suffer from persisting memory deficits and impaired executive functions. Recent studies provide evidence that microglia are involved in the pathophysiology of SAE. METHODS: Here, we investigated whether pharmacological depletion of microglia using PLX5622 (1200 ppm or 300 ppm) in the acute phase of sepsis is able to prevent long-term neurocognitive decline in a male mouse model of polymicrobial sepsis or lipopolysaccharide-induced sterile neuroinflammation. Therefore, we performed the novel object recognition test at different time points after sepsis to address hippocampus-dependent learning. To further assess synapse engulfment in microglia, colocalization analysis was performed using high-resolution 3D Airyscan imaging of Iba1 and Homer1. We also investigated the effect of PLX5622 on acute astrocyte and chronic microglia proliferation in the hippocampus after sepsis induction using immunofluorescence staining. RESULTS: High-dose application of the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 (1200 ppm) seven days prior to sepsis induction lead to 70-80% microglia reduction but resulted in fatal outcome of bacterial sepsis or LPS induced inflammation. This is likely caused by severely compromised host immune response upon PLX5622-induced depletion of peripheral monocytes and macrophages. We therefore tested partial microglia depletion using a low-dose of PLX5622 (300 ppm) for seven days prior to sepsis which resulted in an increased survival in comparison to littermates subjected to high-dose CSF1R inhibiton and to a stable microglia reduction of ~ 40%. This partial microglia depletion in the acute stage of sepsis largely prevented the engulfment and microglia-induced stripping of postsynaptic terminals. In addition, PLX5622 low-dose microglia depletion attenuated acute astrogliosis as well as long-term microgliosis and prevented long-term neurocognitive decline after experimental sepsis. CONCLUSIONS: We conclude that partial microglia depletion before the induction of sepsis may be sufficient to attenuate long-term neurocognitive dysfunction. Application of PLX5622 (300 ppm) acts by reducing microglia-induced synaptic attachement/engulfment and preventing chronic microgliosis.


Assuntos
Doenças Neuroinflamatórias , Sepse , Camundongos , Animais , Masculino , Microglia , Macrófagos , Receptores de Fator Estimulador de Colônias , Sepse/complicações
8.
Crit Care ; 27(1): 214, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259091

RESUMO

Sepsis is the most common cause of admission to intensive care units worldwide. Sepsis patients frequently suffer from sepsis-associated encephalopathy (SAE) reflecting acute brain dysfunction. SAE may result in increased mortality, extended length of hospital stay, and long-term cognitive dysfunction. The diagnosis of SAE is based on clinical assessments, but a valid biomarker to identify and confirm SAE and to assess SAE severity is missing. Several blood-based biomarkers indicating neuronal injury have been evaluated in sepsis and their potential role as early diagnosis and prognostic markers has been studied. Among those, the neuroaxonal injury marker neurofilament light chain (NfL) was identified to potentially serve as a prognostic biomarker for SAE and to predict long-term cognitive impairment. In this review, we summarize the current knowledge of biomarkers, especially NfL, in SAE and discuss a possible future clinical application considering existing limitations.


Assuntos
Encefalopatias , Encefalopatia Associada a Sepse , Sepse , Humanos , Encefalopatia Associada a Sepse/complicações , Encefalopatia Associada a Sepse/diagnóstico , Filamentos Intermediários , Sepse/complicações , Sepse/diagnóstico , Biomarcadores
9.
Ann Neurol ; 88(3): 544-561, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32588476

RESUMO

OBJECTIVE: Impairment of glycinergic neurotransmission leads to complex movement and behavioral disorders. Patients harboring glycine receptor autoantibodies suffer from stiff-person syndrome or its severe variant progressive encephalomyelitis with rigidity and myoclonus. Enhanced receptor internalization was proposed as the common molecular mechanism upon autoantibody binding. Although functional impairment of glycine receptors following autoantibody binding has recently been investigated, it is still incompletely understood. METHODS: A cell-based assay was used for positive sample evaluation. Glycine receptor function was assessed by electrophysiological recordings and radioligand binding assays. The in vivo passive transfer of patient autoantibodies was done using the zebrafish animal model. RESULTS: Glycine receptor function as assessed by glycine dose-response curves showed significantly decreased glycine potency in the presence of patient sera. Upon binding of autoantibodies from 2 patients, a decreased fraction of desensitized receptors was observed, whereas closing of the ion channel remained fast. The glycine receptor N-terminal residues 29 A to 62 G were mapped as a common epitope of glycine receptor autoantibodies. An in vivo transfer into the zebrafish animal model generated a phenotype with disturbed escape behavior accompanied by a reduced number of glycine receptor clusters in the spinal cord of affected animals. INTERPRETATION: Autoantibodies against the extracellular domain mediate alterations of glycine receptor physiology. Moreover, our in vivo data demonstrate that the autoantibodies are a direct cause of the disease, because the transfer of human glycine receptor autoantibodies to zebrafish larvae generated impaired escape behavior in the animal model compatible with abnormal startle response in stiff-person syndrome or progressive encephalitis with rigidity and myoclonus patients. ANN NEUROL 2020;88:544-561.


Assuntos
Autoanticorpos/imunologia , Encefalomielite/imunologia , Rigidez Muscular/imunologia , Receptores de Glicina/metabolismo , Rigidez Muscular Espasmódica/imunologia , Adulto , Idoso , Animais , Autoanticorpos/farmacologia , Autoantígenos/imunologia , Comportamento Animal/efeitos dos fármacos , Encefalomielite/metabolismo , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rigidez Muscular/metabolismo , Receptores de Glicina/imunologia , Rigidez Muscular Espasmódica/metabolismo , Peixe-Zebra
10.
Int J Mol Sci ; 19(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326559

RESUMO

Liver dysfunction during sepsis is an independent risk factor leading to increased mortality rates. Specifically, dysregulation of hepatic biotransformation capacity, especially of the cytochrome P450 (CYP) system, represents an important distress factor during host response. The activity of the conserved stress enzyme sphingomyelin phosphodiesterase 1 (SMPD1) has been shown to be elevated in sepsis patients, allowing for risk stratification. Therefore, the aim of the present study was to investigate whether SMPD1 activity has an impact on expression and activity of different hepatic CYP enzymes using an animal model of polymicrobial sepsis. Polymicrobial sepsis was induced in SMPD1 wild-type and heterozygous mice and hepatic ceramide content as well as CYP mRNA, protein expression and enzyme activities were assessed at two different time points, at 24 h, representing the acute phase, and at 28 days, representing the post-acute phase of host response. In the acute phase of sepsis, SMPD1+/+ mice showed an increased hepatic C16- as well as C18-ceramide content. In addition, a downregulation of CYP expression and activities was detected. In SMPD1+/- mice, however, no noticeable changes of ceramide content and CYP expression and activities during sepsis could be observed. After 28 days, CYP expression and activities were normalized again in all study groups, whereas mRNA expression remained downregulated in SMPD+/+ animals. In conclusion, partial genetic inhibition of SMPD1 stabilizes hepatic ceramide content and improves hepatic monooxygenase function in the acute phase of polymicrobial sepsis. Since we were also able to show that the functional inhibitor of SMPD1, desipramine, ameliorates downregulation of CYP mRNA expression and activities in the acute phase of sepsis in wild-type mice, SMPD1 might be an interesting pharmacological target, which should be further investigated.


Assuntos
Biotransformação/efeitos dos fármacos , Ceramidas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Sepse/metabolismo , Sepse/microbiologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Animais , Biomarcadores , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Interações Hospedeiro-Patógeno , Isoenzimas , Hepatopatias/etiologia , Hepatopatias/metabolismo , Masculino , Camundongos , Sepse/complicações , Sepse/genética
13.
Front Psychol ; 15: 1321145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449763

RESUMO

Introduction: Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Mounting evidence suggests that many cognitively impaired sepsis survivors show long-term neurocognitive deficits in neuropsychological tasks. To date, the underlying mechanisms of these deficits are insufficiently understood. Based on previous evaluations we hypothesized that visual attention and working memory may be affected in a sample of cognitively impaired sepsis survivors. Methods: We utilized psychophysical whole-and partial-report paradigms based on the computational theory of visual attention (TVA) to determine (i) whether sepsis survivors show changes in basic parameters of visual attention and working memory, (ii) whether the affected parameters are related to neuropsychological test results in a standard battery in sepsis survivors and matched healthy control participants, (iii) whether between-group differences in these basic parameters of visual attention could account for underperformance of sepsis survivors in neuropsychological tests when adjusting for potentially relevant clinical variables. Results: We showed that, in sepsis survivors, the maximum number of elements consciously maintained in an instant, i.e. the working memory storage capacity K, is reduced (sepsis survivors: M = 3.0; healthy controls: M = 3.4). Moreover, K explained variance in neurocognitive outcomes -17% in attentional and 16 % in executive functions - in a standard neuropsychological battery. The association remained stable when adjusting for clinical variables. Discussion: Thus, in our sample of cognitively impaired sepsis survivors, a reduction in working memory capacity seems to be a critical determinant of the neurocognitive sequelae. It should be the subject of future work on mechanisms but may also serve as surrogate outcome measure in interventional studies.

14.
Cell Rep Med ; : 101794, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39447569

RESUMO

Lambert-Eaton myasthenic syndrome (LEMS) is an autoantibody-mediated disease of the neuromuscular junction characterized by muscular weakness. Autoantibodies to presynaptic P/Q-type voltage-gated calcium channels (VGCCs) induce defective neuromuscular function. In severe cases, current immunosuppressive and immunomodulatory treatment strategies are often insufficient. First reports show beneficial effects of anti-CD19 chimeric antigen receptor (CAR)-T cell therapy in patients with autoantibody-mediated myasthenia gravis. We report a patient with isolated idiopathic LEMS treated with autologous anti-CD19-CAR-T cells. In this patient, CAR-T infusion leads to expansion of predominantly CD4+ CAR-T cells with a terminally differentiated effector memory cells re-expressing CD45RA (TEMRA)-like phenotype indicating cytotoxic capabilities and subsequent B cell depletion. VGCC antibody titers decrease, resulting in a clinical improvement of LEMS symptoms, e.g., 8-fold increase in walking distance. The patient does not show relevant side effects except for cytokine release syndrome grade 2 and intermittent neutropenia suggesting that anti-CD19 CAR-T cell therapy may be a treatment option in patients with LEMS.

15.
Neurol Neuroimmunol Neuroinflamm ; 11(6): e200298, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39213470

RESUMO

OBJECTIVES: Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a severe form of stiff-person spectrum disorder that can be associated with antibodies against surface antigens (glycine receptor (GlyR), dipeptidyl-peptidase-like-protein-6) and intracellular antigens (glutamate decarboxylase (GAD65), amphiphysin). METHODS: We report clinico-pathologic findings of a PERM patient with coexisting GlyR and GAD65 antibodies. RESULTS: A 75-year-old man presented with myoclonus and pain of the legs, subsequently developed severe motor symptoms, hyperekplexia, a pronounced startle reflex, hallucinations, dysautonomia, and died 10 months after onset despite extensive immunotherapy, symptomatic treatment, and continuous intensive care support. Immunotherapy comprised corticosteroids, IVIG, plasmapheresis, immunoadsorption, cyclophosphamide, and bortezomib. Intensive care treatment and permanent isoflurane sedation was required for more than 20 weeks. CNS tissue revealed neuronal loss, astrogliosis and microgliosis, representing a pallido-nigro-dentato-bulbar-spinal degeneration pattern, specifically along GlyR and GAD expression sites. Neurons showed pSTAT1, MHC class I, and GRP78 upregulation. Inflammation was moderate and characterized by CD8+ T cells and single CD20+/CD79a+ B/plasma cells. Focal tau-positive thread-like deposits were detected in gliotic brainstem areas. In the spinal cord, GlyR, glycine transporter-2, and GAD67 expression were strongly reduced. DISCUSSION: A possible potentiating effect of pathogenic GlyR antibodies together with T cells directed against neurons may have led to the severe and progressive clinical course.


Assuntos
Autoanticorpos , Encefalomielite , Glutamato Descarboxilase , Rigidez Muscular , Mioclonia , Receptores de Glicina , Humanos , Masculino , Idoso , Glutamato Descarboxilase/imunologia , Rigidez Muscular/etiologia , Rigidez Muscular/imunologia , Autoanticorpos/sangue , Encefalomielite/imunologia , Encefalomielite/complicações , Mioclonia/etiologia , Receptores de Glicina/imunologia , Rigidez Muscular Espasmódica/imunologia , Rigidez Muscular Espasmódica/complicações , Evolução Fatal
16.
Artigo | MEDLINE | ID: mdl-37914416

RESUMO

OBJECTIVES: Neurodegeneration is considered a relevant pathophysiologic feature in neurologic disorders associated with antibodies against glutamic acid decarboxylase 65 (GAD65). In this study, we investigate surrogates of neuroaxonal damage in relation to disease duration and clinical presentation. METHODS: In a multicentric cohort of 50 patients, we measured serum neurofilament light chain (sNfL) in relation to disease duration and disease phenotypes, applied automated MRI volumetry, and analyzed clinical characteristics. RESULTS: In patients with neurologic disorders associated with GAD65 antibodies, we detected elevated sNfL levels early in the disease course. By contrast, this elevation of sNfL levels was less pronounced in patients with long-standing disease. Increased sNfL levels were observed in patients presenting with cerebellar ataxia and limbic encephalitis, but not in those with stiff person syndrome. Using MRI volumetry, we identified atrophy predominantly of the cerebellar cortex, cerebellar superior posterior lobe, and cerebral cortex with similar atrophy patterns throughout all clinical phenotypes. DISCUSSION: Together, our data provide evidence for early neuroaxonal damage and support the need for timely therapeutic interventions in GAD65 antibody-associated neurologic disorders.


Assuntos
Ataxia Cerebelar , Doenças do Sistema Nervoso , Rigidez Muscular Espasmódica , Humanos , Atrofia , Autoanticorpos
17.
Neurology ; 103(9): e209888, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39353149

RESUMO

BACKGROUND AND OBJECTIVES: Attack prevention is crucial in managing neuromyelitis optica spectrum disorders (NMOSDs). Eculizumab (ECU), an inhibitor of the terminal complement cascade, was highly effective in preventing attacks in a phase III trial of aquaporin-4 (AQP4)-IgG seropositive(+) NMOSDs. In this article, we evaluated effectiveness and safety of ECU in routine clinical care. METHODS: We retrospectively evaluated patients with AQP4-IgG+ NMOSD treated with ECU between December 2014 and April 2022 at 20 German and 1 Austrian university center(s) of the Neuromyelitis Optica Study Group (NEMOS) by chart review. Primary outcomes were effectiveness (assessed using annualized attack rate [AAR], MRI activity, and disability changes [Expanded Disability Status Scale {EDSS}]) and safety (including adverse events, mortality, and attacks after meningococcal vaccinations), analyzed by descriptive statistics. RESULTS: Fifty-two patients (87% female, age 55.0 ± 16.3 years) received ECU for 16.2 (interquartile range [IQR] 9.6 - 21.7) months. Forty-five patients (87%) received meningococcal vaccination before starting ECU, 9 with concomitant oral prednisone and 36 without. Seven of the latter (19%) experienced attacks shortly after vaccination (median: 9 days, IQR 6-10 days). No postvaccinal attack occurred in the 9 patients vaccinated while on oral prednisone before starting ECU and in 25 (re-)vaccinated while on ECU. During ECU therapy, 88% of patients were attack-free. The median AAR decreased from 1.0 (range 0-4) in the 2 years preceding ECU to 0 (range 0-0.8; p < 0.001). The EDSS score from start to the last follow-up was stable (median 6.0), and the proportion of patients with new T2-enhancing or gadolinium-enhancing MRI lesions in the brain and spinal cord decreased. Seven patients (13%) experienced serious infections. Five patients (10%; median age 53.7 years) died on ECU treatment (1 from myocardial infarction, 1 from ileus with secondary sepsis, and 3 from systemic infection, including 1 meningococcal sepsis), 4 were older than 60 years and severely disabled at ECU treatment start (EDSS score ≥ 7). The overall discontinuation rate was 19%. DISCUSSION: Eculizumab proved to be effective in preventing NMOSD attacks. An increased risk of attacks after meningococcal vaccination before ECU start and potentially fatal systemic infections during ECU-particularly in patients with comorbidities-must be considered. Further research is necessary to explore optimal timing for meningococcal vaccinations. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that eculizumab reduces annualized attack rates and new MRI lesions in AQP4-IgG+ patients with NMOSD.


Assuntos
Anticorpos Monoclonais Humanizados , Neuromielite Óptica , Humanos , Neuromielite Óptica/tratamento farmacológico , Feminino , Pessoa de Meia-Idade , Masculino , Anticorpos Monoclonais Humanizados/uso terapêutico , Adulto , Estudos Retrospectivos , Idoso , Inativadores do Complemento/uso terapêutico , Resultado do Tratamento , Estudos de Coortes , Vacinas Meningocócicas , Aquaporina 4/imunologia , Imageamento por Ressonância Magnética
18.
J Neurol ; 271(5): 2736-2744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38386048

RESUMO

Autoantibodies against contactin-associated protein 2 (Caspr2) not only induce limbic autoimmune encephalitis but are also associated with pain conditions. Here, we analyzed clinical data on pain in a large cohort of patients included into the German Network for Research in Autoimmune Encephalitis. Out of 102 patients in our cohort, pain was a frequent symptom (36% of all patients), often severe (63.6% of the patients with pain) and/or even the major symptom (55.6% of the patients with pain). Pain phenotypes differed between patients. Cluster analysis revealed two major phenotypes including mostly distal-symmetric burning pain and widespread pain with myalgia and cramps. Almost all patients had IgG4 autoantibodies and some additional IgG1, 2, and/or 3 autoantibodies, but IgG subclasses, titers, and presence or absence of intrathecal synthesis were not associated with the occurrence of pain. However, certain pre-existing risk factors for chronic pain like diabetes mellitus, peripheral neuropathy, or preexisting chronic back pain tended to occur more frequently in patients with anti-Caspr2 autoantibodies and pain. Our data show that pain is a relevant symptom in patients with anti-Caspr2 autoantibodies and support the idea of decreased algesic thresholds leading to pain. Testing for anti-Caspr2 autoantibodies needs to be considered in patients with various pain phenotypes.


Assuntos
Autoanticorpos , Proteínas de Membrana , Proteínas do Tecido Nervoso , Fenótipo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Autoanticorpos/sangue , Autoanticorpos/imunologia , Estudos de Coortes , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Proteínas de Membrana/imunologia , Proteínas do Tecido Nervoso/imunologia , Dor/imunologia , Dor/etiologia , Dor/sangue
19.
Ann Clin Transl Neurol ; 10(2): 204-212, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36479924

RESUMO

OBJECTIVE: Serum neurofilament light chain (sNfL) is a biomarker for neuroaxonal damage and has been found to be elevated in several neurological diseases with neuronal destruction. New onset of confusion is a hallmark of severity in infections. The objective of this study was to determine whether sNfL levels are increased in patients with community-acquired pneumonia (CAP) and if increased sNfL levels are associated with disease-associated confusion or disease severity. METHODS: In this observational study, sNfL levels were determined with single-molecule array technology in CAP patients of the CAPNETZ cohort with validated CRB (confusion, respiratory rate, and blood pressure)-65 score. We determined associations between log-transformed sNfL concentrations, well-defined clinical characteristics, and unfavorable outcome in multivariable analyses. Receiver operating characteristic (ROC) analysis was performed to assess the prediction accuracy of sNfL levels for confusion in CAP patients. RESULTS: sNfL concentrations were evaluated in 150 CAP patients. Patients with confusion had higher sNfL levels as compared to non-confusion patients of comparable overall disease severity. ROC analysis of sNfL and confusion provided an area under the curve (AUC) of 0.73 (95% CI 0.62-0.82). Log-transformed sNfL levels were not associated with general disease severity. In a logistic regression analysis, log2-sNfL was identified as a strong predictor for an unfavorable outcome. INTERPRETATION: sNfL levels are specifically associated with confusion and not with pneumonia disease severity, thus reflecting a potential objective marker for encephalopathy in these patients. Furthermore, sNfL levels are also associated with unfavorable outcome in these patients and might help clinicians to identify patients at risk.


Assuntos
Encefalopatias , Pneumonia , Humanos , Filamentos Intermediários , Biomarcadores , Pneumonia/diagnóstico , Curva ROC
20.
Front Mol Neurosci ; 16: 1089101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860666

RESUMO

Glycine receptor (GlyR) autoantibodies are associated with stiff-person syndrome and the life-threatening progressive encephalomyelitis with rigidity and myoclonus in children and adults. Patient histories show variability in symptoms and responses to therapeutic treatments. A better understanding of the autoantibody pathology is required to develop improved therapeutic strategies. So far, the underlying molecular pathomechanisms include enhanced receptor internalization and direct receptor blocking altering GlyR function. A common epitope of autoantibodies against the GlyRα1 has been previously defined to residues 1A-33G at the N-terminus of the mature GlyR extracellular domain. However, if other autoantibody binding sites exist or additional GlyR residues are involved in autoantibody binding is yet unknown. The present study investigates the importance of receptor glycosylation for binding of anti-GlyR autoantibodies. The glycine receptor α1 harbors only one glycosylation site at the amino acid residue asparagine 38 localized in close vicinity to the identified common autoantibody epitope. First, non-glycosylated GlyRs were characterized using protein biochemical approaches as well as electrophysiological recordings and molecular modeling. Molecular modeling of non-glycosylated GlyRα1 did not show major structural alterations. Moreover, non-glycosylation of the GlyRα1N38Q did not prevent the receptor from surface expression. At the functional level, the non-glycosylated GlyR demonstrated reduced glycine potency, but patient GlyR autoantibodies still bound to the surface-expressed non-glycosylated receptor protein in living cells. Efficient adsorption of GlyR autoantibodies from patient samples was possible by binding to native glycosylated and non-glycosylated GlyRα1 expressed in living not fixed transfected HEK293 cells. Binding of patient-derived GlyR autoantibodies to the non-glycosylated GlyRα1 offered the possibility to use purified non-glycosylated GlyR extracellular domain constructs coated on ELISA plates and use them as a fast screening readout for the presence of GlyR autoantibodies in patient serum samples. Following successful adsorption of patient autoantibodies by GlyR ECDs, binding to primary motoneurons and transfected cells was absent. Our results indicate that the glycine receptor autoantibody binding is independent of the receptor's glycosylation state. Purified non-glycosylated receptor domains harbouring the autoantibody epitope thus provide, an additional reliable experimental tool besides binding to native receptors in cell-based assays for detection of autoantibody presence in patient sera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA