Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1011889, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408115

RESUMO

Trypanosomatid parasites undergo developmental regulation to adapt to the different environments encountered during their life cycle. In Trypanosoma brucei, a genome wide selectional screen previously identified a regulator of the protein family ESAG9, which is highly expressed in stumpy forms, a morphologically distinct bloodstream stage adapted for tsetse transmission. This regulator, TbREG9.1, has an orthologue in Trypanosoma congolense, despite the absence of a stumpy morphotype in that parasite species, which is an important cause of livestock trypanosomosis. RNAi mediated gene silencing of TcREG9.1 in Trypanosoma congolense caused a loss of attachment of the parasites to a surface substrate in vitro, a key feature of the biology of these parasites that is distinct from T. brucei. This detachment was phenocopied by treatment of the parasites with a phosphodiesterase inhibitor, which also promotes detachment in the insect trypanosomatid Crithidia fasciculata. RNAseq analysis revealed that TcREG9.1 silencing caused the upregulation of mRNAs for several classes of surface molecules, including transferrin receptor-like molecules, immunoreactive proteins in experimental bovine infections, and molecules related to those associated with stumpy development in T. brucei. Depletion of TcREG9.1 in vivo also generated an enhanced level of parasites in the blood circulation consistent with reduced parasite attachment to the microvasculature. The morphological progression to insect forms of the parasite was also perturbed. We propose a model whereby TcREG9.1 acts as a regulator of attachment and development, with detached parasites being adapted for transmission.


Assuntos
Trypanosoma brucei brucei , Trypanosoma congolense , Animais , Bovinos , Trypanosoma brucei brucei/fisiologia , Interferência de RNA , Inativação Gênica
2.
PLoS Pathog ; 17(1): e1009224, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481935

RESUMO

Animal African trypanosomiasis (AAT) is a severe, wasting disease of domestic livestock and diverse wildlife species. The disease in cattle kills millions of animals each year and inflicts a major economic cost on agriculture in sub-Saharan Africa. Cattle AAT is caused predominantly by the protozoan parasites Trypanosoma congolense and T. vivax, but laboratory research on the pathogenic stages of these organisms is severely inhibited by difficulties in making even minor genetic modifications. As a result, many of the important basic questions about the biology of these parasites cannot be addressed. Here we demonstrate that an in vitro culture of the T. congolense genomic reference strain can be modified directly in the bloodstream form reliably and at high efficiency. We describe a parental single marker line that expresses T. congolense-optimized T7 RNA polymerase and Tet repressor and show that minichromosome loci can be used as sites for stable, regulatable transgene expression with low background in non-induced cells. Using these tools, we describe organism-specific constructs for inducible RNA-interference (RNAi) and demonstrate knockdown of multiple essential and non-essential genes. We also show that a minichromosomal site can be exploited to create a stable bloodstream-form line that robustly provides >40,000 independent stable clones per transfection-enabling the production of high-complexity libraries of genome-scale. Finally, we show that modified forms of T. congolense are still infectious, create stable high-bioluminescence lines that can be used in models of AAT, and follow the course of infections in mice by in vivo imaging. These experiments establish a base set of tools to change T. congolense from a technically challenging organism to a routine model for functional genetics and allow us to begin to address some of the fundamental questions about the biology of this important parasite.


Assuntos
Genética Microbiana , Proteínas de Protozoários/genética , Transgenes , Trypanosoma congolense/genética , Trypanosoma congolense/patogenicidade , Tripanossomíase Africana/parasitologia , Animais , Feminino , Genoma de Protozoário , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tripanossomíase Africana/genética
3.
PLoS Pathog ; 17(7): e1009734, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310651

RESUMO

Animal African Trypanosomiasis (AAT) is a debilitating livestock disease prevalent across sub-Saharan Africa, a main cause of which is the protozoan parasite Trypanosoma congolense. In comparison to the well-studied T. brucei, there is a major paucity of knowledge regarding the biology of T. congolense. Here, we use a combination of omics technologies and novel genetic tools to characterise core metabolism in T. congolense mammalian-infective bloodstream-form parasites, and test whether metabolic differences compared to T. brucei impact upon sensitivity to metabolic inhibition. Like the bloodstream stage of T. brucei, glycolysis plays a major part in T. congolense energy metabolism. However, the rate of glucose uptake is significantly lower in bloodstream stage T. congolense, with cells remaining viable when cultured in concentrations as low as 2 mM. Instead of pyruvate, the primary glycolytic endpoints are succinate, malate and acetate. Transcriptomics analysis showed higher levels of transcripts associated with the mitochondrial pyruvate dehydrogenase complex, acetate generation, and the glycosomal succinate shunt in T. congolense, compared to T. brucei. Stable-isotope labelling of glucose enabled the comparison of carbon usage between T. brucei and T. congolense, highlighting differences in nucleotide and saturated fatty acid metabolism. To validate the metabolic similarities and differences, both species were treated with metabolic inhibitors, confirming that electron transport chain activity is not essential in T. congolense. However, the parasite exhibits increased sensitivity to inhibition of mitochondrial pyruvate import, compared to T. brucei. Strikingly, T. congolense exhibited significant resistance to inhibitors of fatty acid synthesis, including a 780-fold higher EC50 for the lipase and fatty acid synthase inhibitor Orlistat, compared to T. brucei. These data highlight that bloodstream form T. congolense diverges from T. brucei in key areas of metabolism, with several features that are intermediate between bloodstream- and insect-stage T. brucei. These results have implications for drug development, mechanisms of drug resistance and host-pathogen interactions.


Assuntos
Trypanosoma brucei brucei/metabolismo , Trypanosoma congolense/metabolismo , Animais , Reguladores do Metabolismo de Lipídeos/farmacologia , Camundongos , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma congolense/efeitos dos fármacos , Tripanossomíase Africana
4.
Nucleic Acids Res ; 49(6): 3242-3262, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33660774

RESUMO

The African trypanosome Trypanosoma brucei is a unicellular eukaryote, which relies on a protective variant surface glycoprotein (VSG) coat for survival in the mammalian host. A single trypanosome has >2000 VSG genes and pseudogenes of which only one is expressed from one of ∼15 telomeric bloodstream form expression sites (BESs). Infectious metacyclic trypanosomes present within the tsetse fly vector also express VSG from a separate set of telomeric metacyclic ESs (MESs). All MESs are silenced in bloodstream form T. brucei. As very little is known about how this is mediated, we performed a whole genome RNAi library screen to identify MES repressors. This allowed us to identify a novel SAP domain containing DNA binding protein which we called TbSAP. TbSAP is enriched at the nuclear periphery and binds both MESs and BESs. Knockdown of TbSAP in bloodstream form trypanosomes did not result in cells becoming more 'metacyclic-like'. Instead, there was extensive global upregulation of transcripts including MES VSGs, VSGs within the silent VSG arrays as well as genes immediately downstream of BES promoters. TbSAP therefore appears to be a novel chromatin protein playing an important role in silencing the extensive VSG repertoire of bloodstream form T. brucei.


Assuntos
Proteínas de Protozoários/metabolismo , Proteínas Repressoras/metabolismo , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteínas de Protozoários/genética , Interferência de RNA , Proteínas Repressoras/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
5.
Hum Mol Genet ; 24(13): 3775-91, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25859007

RESUMO

Distinct mutations in the centrosomal-cilia protein CEP290 lead to diverse clinical findings in syndromic ciliopathies. We show that CEP290 localizes to the transition zone in ciliated cells, precisely to the region of Y-linkers between central microtubules and plasma membrane. To create models of CEP290-associated ciliopathy syndromes, we generated Cep290(ko/ko) and Cep290(gt/gt) mice that produce no or a truncated CEP290 protein, respectively. Cep290(ko/ko) mice exhibit early vision loss and die from hydrocephalus. Retinal photoreceptors in Cep290(ko/ko) mice lack connecting cilia, and ciliated ventricular ependyma fails to mature. The minority of Cep290(ko/ko) mice that escape hydrocephalus demonstrate progressive kidney pathology. Cep290(gt/gt) mice die at mid-gestation, and the occasional Cep290(gt/gt) mouse that survives shows hydrocephalus and severely cystic kidneys. Partial loss of CEP290-interacting ciliopathy protein MKKS mitigates lethality and renal pathology in Cep290(gt/gt) mice. Our studies demonstrate domain-specific functions of CEP290 and provide novel therapeutic paradigms for ciliopathies.


Assuntos
Cílios/metabolismo , Hidrocefalia/genética , Doenças Renais Císticas/genética , Proteínas Nucleares/genética , Animais , Antígenos de Neoplasias , Proteínas de Ciclo Celular , Cílios/genética , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Feminino , Humanos , Hidrocefalia/metabolismo , Doenças Renais Císticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/metabolismo , Especificidade de Órgãos
6.
PLoS Pathog ; 11(11): e1005273, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26565797

RESUMO

Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.


Assuntos
Divisão Celular/fisiologia , Ciclinas/metabolismo , Malária/parasitologia , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Culicidae , Ciclinas/genética , Feminino , Humanos , Camundongos , Oocistos , Proteínas de Protozoários/genética , Esporozoítos/crescimento & desenvolvimento
7.
Mol Cell Proteomics ; 14(7): 1911-26, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25931509

RESUMO

Surface membrane organization and composition is key to cellular function, and membrane proteins serve many essential roles in endocytosis, secretion, and cell recognition. The surface of parasitic organisms, however, is a double-edged sword; this is the primary interface between parasites and their hosts, and those crucial cellular processes must be carried out while avoiding elimination by the host immune defenses. For extracellular African trypanosomes, the surface is partitioned such that all endo- and exocytosis is directed through a specific membrane region, the flagellar pocket, in which it is thought the majority of invariant surface proteins reside. However, very few of these proteins have been identified, severely limiting functional studies, and hampering the development of potential treatments. Here we used an integrated biochemical, proteomic and bioinformatic strategy to identify surface components of the human parasite Trypanosoma brucei. This surface proteome contains previously known flagellar pocket proteins as well as multiple novel components, and is significantly enriched in proteins that are essential for parasite survival. Molecules with receptor-like properties are almost exclusively parasite-specific, whereas transporter-like proteins are conserved in model organisms. Validation shows that the majority of surface proteome constituents are bona fide surface-associated proteins and, as expected, most present at the flagellar pocket. Moreover, the largest systematic analysis of trypanosome surface molecules to date provides evidence that the cell surface is compartmentalized into three distinct domains with free diffusion of molecules in each, but selective, asymmetric traffic between. This work provides a paradigm for the compartmentalization of a cell surface and a resource for its analysis.


Assuntos
Interações Hospedeiro-Patógeno , Parasitos/metabolismo , Proteômica/métodos , Animais , Membrana Celular/metabolismo , Biologia Computacional , Humanos , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Reprodutibilidade dos Testes , Trypanosoma brucei brucei/metabolismo
8.
J Biol Chem ; 290(45): 26954-26967, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26378228

RESUMO

ISWI chromatin remodelers are highly conserved in eukaryotes and are important for the assembly and spacing of nucleosomes, thereby controlling transcription initiation and elongation. ISWI is typically associated with different subunits, forming specialized complexes with discrete functions. In the unicellular parasite Trypanosoma brucei, which causes African sleeping sickness, TbISWI down-regulates RNA polymerase I (Pol I)-transcribed variant surface glycoprotein (VSG) gene expression sites (ESs), which are monoallelically expressed. Here, we use tandem affinity purification to determine the interacting partners of TbISWI. We identify three proteins that do not show significant homology with known ISWI-associated partners. Surprisingly, one of these is nucleoplasmin-like protein (NLP), which we had previously shown to play a role in ES control. In addition, we identify two novel ISWI partners, regulator of chromosome condensation 1-like protein (RCCP) and phenylalanine/tyrosine-rich protein (FYRP), both containing protein motifs typically found on chromatin proteins. Knockdown of RCCP or FYRP in bloodstream form T. brucei results in derepression of silent variant surface glycoprotein ESs, as had previously been shown for TbISWI and NLP. All four proteins are expressed and interact with each other in both major life cycle stages and show similar distributions at Pol I-transcribed loci. They are also found at Pol II strand switch regions as determined with ChIP. ISWI, NLP, RCCP, and FYRP therefore appear to form a single major ISWI complex in T. brucei (TbIC). This reduced complexity of ISWI regulation and the presence of novel ISWI partners highlights the early divergence of trypanosomes in evolution.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Trypanosoma brucei brucei/genética , Animais , Técnicas de Silenciamento de Genes , Genes de Protozoários , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Transcrição Gênica , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
9.
Crit Rev Biochem Mol Biol ; 48(4): 373-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23895660

RESUMO

Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.


Assuntos
Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Paleontologia/métodos , Evolução Biológica , Células Eucarióticas/classificação , Filogenia
10.
Mol Microbiol ; 90(6): 1339-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24164479

RESUMO

Trypanosomes use a microtubule-focused mechanism for cell morphogenesis and cytokinesis. We used scanning electron and video microscopy of living cells to provide the first detailed description of cell morphogenesis and cytokinesis in the early-branching eukaryote Trypanosoma brucei. We outline four distinct stages of cytokinesis and show that an asymmetric division fold bisects the two daughter cells, with a cytoplasmic bridge-like structure connecting the two daughters immediately prior to abscission. Using detection of tyrosinated α-tubulin as a marker for new or growing microtubules and expression of XMAP215, a plus end binding protein, as a marker for microtubule plus ends we demonstrate spatial asymmetry in the underlying microtubule cytoskeleton throughout the cell division cycle. This leads to inheritance of different microtubule cytoskeletal patterns and demonstrates the major role of microtubules in achieving cytokinesis. RNA interference techniques have led to a large set of mutants, often with variations in phenotype between procyclic and bloodstream life cycle forms. Here, we show morphogenetic differences between these two life cycle forms of this parasite during new flagellum growth and cytokinesis. These discoveries are important tools to explain differences between bloodstream and procyclic form RNAi phenotypes involving organelle mis-positioning during cell division and cytokinesis defects.


Assuntos
Citocinese , Microtúbulos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Moscas Tsé-Tsé/parasitologia , Animais , Ciclo Celular , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Estágios do Ciclo de Vida , Microscopia Eletrônica de Varredura , Microtúbulos/genética , Microtúbulos/ultraestrutura , Morfogênese , Mutação , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/ultraestrutura
11.
PLoS Pathog ; 8(9): e1002948, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028336

RESUMO

Protein phosphorylation and dephosphorylation (catalysed by kinases and phosphatases, respectively) are post-translational modifications that play key roles in many eukaryotic signalling pathways, and are often deregulated in a number of pathological conditions in humans. In the malaria parasite Plasmodium, functional insights into its kinome have only recently been achieved, with over half being essential for blood stage development and another 14 kinases being essential for sexual development and mosquito transmission. However, functions for any of the plasmodial protein phosphatases are unknown. Here, we use reverse genetics in the rodent malaria model, Plasmodium berghei, to examine the role of a unique protein phosphatase containing kelch-like domains (termed PPKL) from a family related to Arabidopsis BSU1. Phylogenetic analysis confirmed that the family of BSU1-like proteins including PPKL is encoded in the genomes of land plants, green algae and alveolates, but not in other eukaryotic lineages. Furthermore, PPKL was observed in a distinct family, separate to the most closely-related phosphatase family, PP1. In our genetic approach, C-terminal GFP fusion with PPKL showed an active protein phosphatase preferentially expressed in female gametocytes and ookinetes. Deletion of the endogenous ppkl gene caused abnormal ookinete development and differentiation, and dissociated apical microtubules from the inner-membrane complex, generating an immotile phenotype and failure to invade the mosquito mid-gut epithelium. These observations were substantiated by changes in localisation of cytoskeletal tubulin and actin, and the micronemal protein CTRP in the knockout mutant as assessed by indirect immunofluorescence. Finally, increased mRNA expression of dozi, a RNA helicase vital to zygote development was observed in ppkl(-) mutants, with global phosphorylation studies of ookinete differentiation from 1.5-24 h post-fertilisation indicating major changes in the first hours of zygote development. Our work demonstrates a stage-specific essentiality of the unique PPKL enzyme, which modulates parasite differentiation, motility and transmission.


Assuntos
Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Plasmodium berghei/enzimologia , Plasmodium berghei/crescimento & desenvolvimento , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Alveolados/química , Alveolados/genética , Motivos de Aminoácidos , Animais , Anopheles/parasitologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sequência de Bases , Diferenciação Celular , Genes de Protozoários , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas Fosfatases/genética , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas de Protozoários/genética , Análise de Sequência de DNA , Viridiplantae/química
12.
Eukaryot Cell ; 12(7): 1009-19, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23687115

RESUMO

SAS-6 is required for centriole biogenesis in diverse eukaryotes. Here, we describe a novel family of SAS-6-like (SAS6L) proteins that share an N-terminal domain with SAS-6 but lack coiled-coil tails. SAS6L proteins are found in a subset of eukaryotes that contain SAS-6, including diverse protozoa and green algae. In the apicomplexan parasite Toxoplasma gondii, SAS-6 localizes to the centriole but SAS6L is found above the conoid, an enigmatic tubulin-containing structure found at the apex of a subset of alveolate organisms. Loss of SAS6L causes reduced fitness in Toxoplasma. The Trypanosoma brucei homolog of SAS6L localizes to the basal-plate region, the site in the axoneme where the central-pair microtubules are nucleated. When endogenous SAS6L is overexpressed in Toxoplasma tachyzoites or Trypanosoma trypomastigotes, it forms prominent filaments that extend through the cell cytoplasm, indicating that it retains a capacity to form higher-order structures despite lacking a coiled-coil domain. We conclude that although SAS6L proteins share a conserved domain with SAS-6, they are a functionally distinct family that predates the last common ancestor of eukaryotes. Moreover, the distinct localization of the SAS6L protein in Trypanosoma and Toxoplasma adds weight to the hypothesis that the conoid complex evolved from flagellar components.


Assuntos
Evolução Biológica , Flagelos/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Citoesqueleto de Actina/metabolismo , Axonema/metabolismo , Axonema/ultraestrutura , Cílios/metabolismo , Flagelos/ultraestrutura , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Toxoplasma/ultraestrutura
13.
Eukaryot Cell ; 11(5): 662-72, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22389385

RESUMO

African trypanosomes are the only organisms known to use RNA polymerase I (pol I) to transcribe protein-coding genes. These genes include VSG, which is essential for immune evasion and is transcribed from an extranucleolar expression site body (ESB). Several trypanosome pol I subunits vary compared to their homologues elsewhere, and the question arises as to how these variations relate to pol I function. A clear example is the N-terminal extension found on the second-largest subunit of pol I, RPA2. Here, we identify an essential role for this region. RPA2 truncation leads to nuclear exclusion and a growth defect which phenocopies single-allele knockout. The N terminus is not a general nuclear localization signal (NLS), however, and it fails to accumulate unrelated proteins in the nucleus. An ectopic NLS is sufficient to reinstate nuclear localization of truncated RPA2, but it does not restore function. Moreover, NLS-tagged, truncated RPA2 has a different subnuclear distribution to full-length protein and is unable to build stable pol I complexes. We conclude that the RPA2 N-terminal extension does not have a role exclusive to the expression of protein-coding genes, but it is essential for all pol I functions in trypanosomes because it directs trypanosomatid-specific interactions with RPA1.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Protozoários/metabolismo , RNA Polimerase I/metabolismo , Trypanosoma brucei brucei/metabolismo , Alelos , Sequência de Aminoácidos , Biologia Computacional , Meios de Cultura/metabolismo , Técnicas de Inativação de Genes , Microscopia de Fluorescência , Complexos Multiproteicos/metabolismo , Regiões Promotoras Genéticas , Estabilidade Proteica , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transfecção , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética
14.
iScience ; 26(4): 106410, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37034981

RESUMO

The eukaryotic BBSome is a transport complex within cilia and assembled by chaperonin-like BBS proteins. Recent work indicates nuclear functions for BBS proteins in mammals, but it is unclear how common these are in extant proteins or when they evolved. We screened for BBS orthologues across a diverse set of eukaryotes, consolidated nuclear association via signal sequence predictions and permutation analysis, and validated nuclear localization in mammalian cells via fractionation and immunocytochemistry. BBS proteins are-with exceptions-conserved as a set in ciliated species. Predictions highlight five most likely nuclear proteins and suggest that nuclear roles evolved independently of nuclear access during mitosis. Nuclear localization was confirmed in human cells. These findings suggest that nuclear BBS functions are potentially not restricted to mammals, but may be a common frequently co-opted eukaryotic feature. Understanding the functional spectrum of BBS proteins will help elucidating their role in gene regulation, development, and disease.

15.
J Cell Sci ; 123(Pt 9): 1407-13, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20388734

RESUMO

Centrioles are highly conserved structures that fulfil important cellular functions, such as nucleation of cilia and flagella (basal-body function) and organisation of pericentriolar material to form the centrosome. The evolution of these functions can be inferred from the distribution of the molecular components of extant centrioles and centrosomes. Here, we undertake an evolutionary analysis of 53 proteins known either for centriolar association or for involvement in cilia-associated pathologies. By linking protein distribution in 45 diverse eukaryotes with organism biology, we provide molecular evidence to show that basal-body function is ancestral, whereas the presence of the centrosome is specific to the Holozoa. We define an ancestral centriolar inventory of 14 core proteins, Polo-like-kinase, and proteins associated with Bardet-Biedl syndrome (BBS) and Meckel-Gruber syndrome. We show that the BBSome is absent from organisms that produce cilia only for motility, predicting a dominant and ancient role for this complex in sensory function. We also show that the unusual centriole of Caenorhabditis elegans is highly divergent in both protein composition and sequence. Finally, we demonstrate a correlation between the presence of specific centriolar proteins and eye evolution. This correlation is used to predict proteins with functions in the development of ciliary, but not rhabdomeric, eyes.


Assuntos
Centríolos/química , Centríolos/metabolismo , Evolução Molecular , Proteínas/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Centríolos/enzimologia , Centríolos/genética , Cílios/metabolismo , Células Eucarióticas/metabolismo , Humanos , Fosfotransferases/metabolismo , Filogenia , Tubulina (Proteína)/genética
16.
New Phytol ; 195(3): 526-540, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22691130

RESUMO

Eukaryotic cilia/flagella are ancient organelles with motility and sensory functions. Cilia display significant ultrastructural conservation where present across the eukaryotic phylogeny; however, diversity in ciliary biology exists and the ability to produce cilia has been lost independently on a number of occasions. Land plants provide an excellent system for the investigation of cilia evolution and loss across a broad phylogeny, because early divergent land plant lineages produce cilia, whereas most seed plants do not. This review highlights the differences in cilia form and function across land plants and discusses how recent advances in genomics are providing novel insights into the evolutionary trajectory of ciliary proteins. We propose a renewed effort to adopt ciliated land plants as models to investigate the mechanisms underpinning complex ciliary processes, such as number control, the coordination of basal body placement and the regulation of beat patterns.


Assuntos
Cílios/metabolismo , Embriófitas/metabolismo , Evolução Molecular , Genoma de Planta , Axonema/metabolismo , Membrana Celular/metabolismo , Centríolos/genética , Centríolos/metabolismo , Cílios/genética , Embriófitas/classificação , Embriófitas/genética , Flagelos/metabolismo , Filogenia , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Open Biol ; 12(8): 220133, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36043268

RESUMO

The activity of a kinesin is largely determined by the approximately 350 residue motor domain, and this region alone is sufficient to classify a kinesin as a member of a particular family. The kinesin-13 family are a group of microtubule depolymerizing kinesins and are vital regulators of microtubule length. Kinesin-13s are critical to spindle assembly and chromosome segregation in both mitotic and meiotic cell division and play crucial roles in cilium length control and neuronal development. To better understand the evolution of microtubule depolymerization activity, we created a synthetic ancestral kinesin-13 motor domain. This phylogenetically inferred ancestral motor domain is the sequence predicted to have existed in the common ancestor of the kinesin-13 family. Here we show that the ancestral kinesin-13 motor depolymerizes stabilized microtubules faster than any previously tested depolymerase. This potent activity is more than an order of magnitude faster than the most highly studied kinesin-13, MCAK and allows the ancestral kinesin-13 to depolymerize doubly stabilized microtubules and cause internal breaks within microtubules. These data suggest that the ancestor of the kinesin-13 family was a 'super depolymerizer' and that members of the kinesin-13 family have evolved away from this extreme depolymerizing activity to provide more controlled microtubule depolymerization activity in extant cells.


Assuntos
Cinesinas , Microtúbulos , Segregação de Cromossomos , Cinesinas/genética
18.
mBio ; 13(6): e0255322, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36354333

RESUMO

Trypanosoma brucei gambiense is the primary causative agent of human African trypanosomiasis (HAT), a vector-borne disease endemic to West and Central Africa. The extracellular parasite evades antibody recognition within the host bloodstream by altering its variant surface glycoprotein (VSG) coat through a process of antigenic variation. The serological tests that are widely used to screen for HAT use VSG as one of the target antigens. However, the VSGs expressed during human infection have not been characterized. Here, we use VSG sequencing (VSG-seq) to analyze the VSGs expressed in the blood of patients infected with T. b. gambiense and compared them to VSG expression in Trypanosoma brucei rhodesiense infections in humans as well as Trypanosoma brucei brucei infections in mice. The 44 VSGs expressed during T. b. gambiense infection revealed a striking bias toward expression of type B N termini (82% of detected VSGs). This bias is specific to T. b. gambiense, which is unique among T. brucei subspecies in its chronic clinical presentation and anthroponotic nature. The expressed T. b. gambiense VSGs also share very little similarity to sequences from 36 T. b. gambiense whole-genome sequencing data sets, particularly in areas of the VSG protein exposed to host antibodies, suggesting the antigen repertoire is under strong selective pressure to diversify. Overall, this work demonstrates new features of antigenic variation in T. brucei gambiense and highlights the importance of understanding VSG repertoires in nature. IMPORTANCE Human African trypanosomiasis is a neglected tropical disease primarily caused by the extracellular parasite Trypanosoma brucei gambiense. To avoid elimination by the host, these parasites repeatedly replace their variant surface glycoprotein (VSG) coat. Despite the important role of VSGs in prolonging infection, VSG expression during human infections is poorly understood. A better understanding of natural VSG gene expression dynamics can clarify the mechanisms that T. brucei uses to alter its VSG coat. We analyzed the expressed VSGs detected in the blood of patients with trypanosomiasis. Our findings indicate that there are features of antigenic variation unique to human-infective T. brucei subspecies and that natural VSG repertoires may vary more than previously expected.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Humanos , Animais , Camundongos , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei gambiense/genética , Glicoproteínas de Membrana
20.
BMC Plant Biol ; 11: 185, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22208660

RESUMO

BACKGROUND: Eukaryotic cilia are complex, highly conserved microtubule-based organelles with a broad phylogenetic distribution. Cilia were present in the last eukaryotic common ancestor and many proteins involved in cilia function have been conserved through eukaryotic diversification. However, cilia have also been lost multiple times in different lineages, with at least two losses occurring within the land plants. Whereas all non-seed plants produce cilia for motility of male gametes, some gymnosperms and all angiosperms lack cilia. During these evolutionary losses, proteins with ancestral ciliary functions may be lost or co-opted into different functions. RESULTS: Here we identify a core set of proteins with an inferred ciliary function that are conserved in ciliated eukaryotic species. We interrogate this genomic dataset to identify proteins with a predicted ancestral ciliary role that have been maintained in non-ciliated land plants. In support of our prediction, we demonstrate that several of these proteins have a flagellar localisation in protozoan trypanosomes. The phylogenetic distribution of these genes within the land plants indicates evolutionary scenarios of either sub- or neo-functionalisation and expression data analysis shows that these genes are highly expressed in Arabidopsis thaliana pollen cells. CONCLUSIONS: A large number of proteins possess a phylogenetic ciliary profile indicative of ciliary function. Remarkably, many genes with an ancestral ciliary role are maintained in non-ciliated land plants. These proteins have been co-opted to perform novel functions, most likely before the loss of cilia, some of which appear related to the formation of the male gametes.


Assuntos
Arabidopsis/genética , Cílios/genética , Evolução Molecular , Proteínas de Plantas/genética , Biologia Computacional , Sequência Conservada , Filogenia , Pólen/genética , Trypanosoma brucei brucei/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA