Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 105(13): 135702, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21230788

RESUMO

We identify the pattern of microscopic dynamical relaxation for a two-dimensional glass-forming liquid. On short time scales, bursts of irreversible particle motion, called cage jumps, aggregate into clusters. On larger time scales, clusters aggregate both spatially and temporally into avalanches. This propagation of mobility takes place along the soft regions of the systems, which have been identified by computing isoconfigurational Debye-Waller maps. Our results characterize the way in which dynamical heterogeneity evolves in moderately supercooled liquids and reveal that it is astonishingly similar to the one found for dense glassy granular media.

2.
Protein Sci ; 8(5): 1127-33, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10338023

RESUMO

NMR offers the possibility of accurate secondary structure for proteins that would be too large for structure determination. In the absence of an X-ray crystal structure, this information should be useful as an adjunct to protein fold recognition methods based on low resolution force fields. The value of this information has been tested by adding varying amounts of artificial secondary structure data and threading a sequence through a library of candidate folds. Using a literature test set, the threading method alone has only a one-third chance of producing a correct answer among the top ten guesses. With realistic secondary structure information, one can expect a 60-80% chance of finding a homologous structure. The method has then been applied to examples with published estimates of secondary structure. This implementation is completely independent of sequence homology, and sequences are optimally aligned to candidate structures with gaps and insertions allowed. Unlike work using predicted secondary structure, we test the effect of differing amounts of relatively reliable data.


Assuntos
Espectroscopia de Ressonância Magnética , Dobramento de Proteína , Estrutura Secundária de Proteína , Algoritmos , Simulação por Computador , Bases de Dados Factuais , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA