Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 17(7): 625-632, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29867169

RESUMO

Conductive metal-organic frameworks are an emerging class of three-dimensional architectures with degrees of modularity, synthetic flexibility and structural predictability that are unprecedented in other porous materials. However, engendering long-range charge delocalization and establishing synthetic strategies that are broadly applicable to the diverse range of structures encountered for this class of materials remain challenging. Here, we report the synthesis of K x Fe2(BDP)3 (0 ≤ x ≤ 2; BDP2- = 1,4-benzenedipyrazolate), which exhibits full charge delocalization within the parent framework and charge mobilities comparable to technologically relevant polymers and ceramics. Through a battery of spectroscopic methods, computational techniques and single-microcrystal field-effect transistor measurements, we demonstrate that fractional reduction of Fe2(BDP)3 results in a metal-organic framework that displays a nearly 10,000-fold enhancement in conductivity along a single crystallographic axis. The attainment of such properties in a K x Fe2(BDP)3 field-effect transistor represents the realization of a general synthetic strategy for the creation of new porous conductor-based devices.

2.
J Am Chem Soc ; 136(6): 2432-40, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24456083

RESUMO

The elimination of specific environmental and industrial contaminants, which are hazardous at only part per million to part per billion concentrations, poses a significant technological challenge. Adsorptive materials designed for such processes must be engendered with an exceptionally high enthalpy of adsorption for the analyte of interest. Rather than relying on a single strong interaction, the use of multiple chemical interactions is an emerging strategy for achieving this requisite physical parameter. Herein, we describe an efficient, catalytic synthesis of diamondoid porous organic polymers densely functionalized with carboxylic acids. Physical parameters such as pore size distribution, application of these materials to low-pressure ammonia adsorption, and comparison with analogous materials featuring functional groups of varying acidity are presented. In particular, BPP-5, which features a multiply interpenetrated structure dominated by <6 Å pores, is shown to exhibit an uptake of 17.7 mmol/g at 1 bar, the highest capacity yet demonstrated for a readily recyclable material. A complementary framework, BPP-7, features slightly larger pore sizes, and the resulting improvement in uptake kinetics allows for efficient adsorption at low pressure (3.15 mmol/g at 480 ppm). Overall, the data strongly suggest that the spatial arrangement of acidic sites allows for cooperative behavior, which leads to enhanced NH3 adsorption.

3.
Chemistry ; 19(18): 5533-6, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23495187

RESUMO

Shields up! Post-synthetic modification of the secondary building units in the metal-organic framework UiO-66 (Zr6O4(OH)4(O2CR)12) by dehydration and subsequent grafting of LiOtBu yields a solid Li(+) electrolyte with a conductivity of 1.8×10(-5) S cm(-1) at 293 K. As the grafting leads to screening of the anionic charge, the activation energy for ionic conduction is significantly lower than when Li(+) is introduced through deprotonation.

4.
J Am Chem Soc ; 134(16): 7056-65, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22475173

RESUMO

Two new metal-organic frameworks, M(2)(dobpdc) (M = Zn (1), Mg (2); dobpdc(4-) = 4,4'-dioxido-3,3'-biphenyldicarboxylate), adopting an expanded MOF-74 structure type, were synthesized via solvothermal and microwave methods. Coordinatively unsaturated Mg(2+) cations lining the 18.4-Å-diameter channels of 2 were functionalized with N,N'-dimethylethylenediamine (mmen) to afford Mg(2)(dobpdc)(mmen)(1.6)(H(2)O)(0.4) (mmen-Mg(2)(dobpdc)). This compound displays an exceptional capacity for CO(2) adsorption at low pressures, taking up 2.0 mmol/g (8.1 wt %) at 0.39 mbar and 25 °C, conditions relevant to removal of CO(2) from air, and 3.14 mmol/g (12.1 wt %) at 0.15 bar and 40 °C, conditions relevant to CO(2) capture from flue gas. Dynamic gas adsorption/desorption cycling experiments demonstrate that mmen-Mg(2)(dobpdc) can be regenerated upon repeated exposures to simulated air and flue gas mixtures, with cycling capacities of 1.05 mmol/g (4.4 wt %) after 1 h of exposure to flowing 390 ppm CO(2) in simulated air at 25 °C and 2.52 mmol/g (9.9 wt %) after 15 min of exposure to flowing 15% CO(2) in N(2) at 40 °C. The purity of the CO(2) removed from dry air and flue gas in these processes was estimated to be 96% and 98%, respectively. As a flue gas adsorbent, the regeneration energy was estimated through differential scanning calorimetry experiments to be 2.34 MJ/kg CO(2) adsorbed. Overall, the performance characteristics of mmen-Mg(2)(dobpdc) indicate it to be an exceptional new adsorbent for CO(2) capture, comparing favorably with both amine-grafted silicas and aqueous amine solutions.

5.
J Am Chem Soc ; 133(37): 14522-5, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21877685

RESUMO

The uptake of LiO(i)Pr in Mg(2)(dobdc) (dobdc(4-) = 1,4-dioxido-2,5-benzenedicarboxylate) followed by soaking in a typical electrolyte solution leads to the new solid lithium electrolyte Mg(2)(dobdc)·0.35LiO(i)Pr·0.25LiBF(4)·EC·DEC (EC = ethylene carbonate; DEC = diethyl carbonate). Two-point ac impedance data show a pressed pellet of this material to have a conductivity of 3.1 × 10(-4) S/cm at 300 K. In addition, the results from variable-temperature measurements reveal an activation energy of just 0.15 eV, while single-particle data suggest that intraparticle transport dominates conduction.

6.
J Phys Chem A ; 113(23): 6437-45, 2009 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-19441808

RESUMO

We examine the photophysics of a colloidal suspension of C(60) particles in a micellar solution of Triton X-100 and water, prepared via a new synthesis which allows high-concentration suspensions. The particle sizes are characterized by transmission electron microscopy and dynamic light scattering and found to be somewhat polydisperse in the range of 10-100 nm. The suspension is characterized optically by UV-vis spectroscopy, femtosecond transient absorption spectroscopy, laser flash photolysis, and z-scan. The ground-state absorbance spectrum shows a broad absorbance feature centered near 450 nm which is indicative of colloidal C(60). The transient absorption dynamics, presented for the first time with femtosecond resolution, are very similar to that of thin films of C(60) and indicate a strong quenching of the singlet excited state on short time scales and evidence of little intersystem crossing to a triplet excited state. Laser flash photolysis reveals that a triplet excited-state absorption spectrum, which is essentially identical in shape to that of molecular C(60) solutions, does indeed arise, but with much lower magnitude and somewhat shorter lifetime. Z-scan analysis confirms that the optical response of this material is dominated by nonlinear scattering.


Assuntos
Fulerenos/química , Octoxinol/química , Tensoativos/química , Água/química , Absorção , Coloides , Lasers , Luz , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Fotólise , Espalhamento de Radiação , Fuligem/química , Suspensões , Fatores de Tempo
7.
Science ; 340(6135): 960-4, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23704568

RESUMO

Metal-organic frameworks can offer pore geometries that are not available in zeolites or other porous media, facilitating distinct types of shape-based molecular separations. Here, we report Fe2(BDP)3 (BDP(2-) = 1,4-benzenedipyrazolate), a highly stable framework with triangular channels that effect the separation of hexane isomers according to the degree of branching. Consistent with the varying abilities of the isomers to wedge along the triangular corners of the structure, adsorption isotherms and calculated isosteric heats indicate an adsorption selectivity order of n-hexane > 2-methylpentane > 3-methylpentane > 2,3-dimethylbutane ≈ 2,2-dimethylbutane. A breakthrough experiment performed at 160°C with an equimolar mixture of all five molecules confirms that the dibranched isomers elute first from a bed packed with Fe2(BDP)3, followed by the monobranched isomers and finally linear n-hexane. Configurational-bias Monte Carlo simulations confirm the origins of the molecular separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA