Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(20): 205701, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860060

RESUMO

Rapid solidification experiments on thin film aluminum samples reveal the presence of lattice orientation gradients within crystallizing grains. To study this phenomenon, a single-component phase-field crystal (PFC) model that captures the properties of solid, liquid, and vapor phases is proposed to model pure aluminium quantitatively. A coarse-grained amplitude representation of this model is used to simulate solidification in samples approaching micrometer scales. The simulations reproduce the experimentally observed orientation gradients within crystallizing grains when grown at experimentally relevant rapid quenches. We propose a causal connection between defect formation and orientation gradients.

2.
Nat Mater ; 17(1): 56-63, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180772

RESUMO

Surface segregation-the enrichment of one element at the surface, relative to the bulk-is ubiquitous to multi-component materials. Using the example of a Cu-Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface diffusion and trapping process. The resulting chemically ordered surface regions acts as an effective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associated with their nucleation, glide, climb, and annihilation at elevated temperatures. These observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.

3.
J Chem Phys ; 138(8): 084504, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23464157

RESUMO

Accurate low-order structure factors (Fg) measured by quantitative convergent beam electron diffraction (QCBED) were used for validation of different density functional theory (DFT) approximations. Twenty-three low-order Fg were measured for the transition metals Cr, Fe, Co, Ni, and Cu, and the transition metal based intermetallic phases γ-TiAl, ß-NiAl, and γ1-FePd using a multi-beam off-zone axis QCBED method and then compared with Fg calculated by ab initio DFT using the local density approximation (LDA) and LDA + U, and different generalized gradient approximations (GGA) functionals. Different functionals perform very differently for different materials and crystal structures regarding prediction of low-order Fg. All the GGA functionals tested in the paper except for EV93 achieve good overall agreement with the experimentally determined low-order Fg for BCC Cr and Fe, while EV93 performs the best for FCC Ni and Cu. The LDA and GGA functional fail to predict accurately the low-order Fg for ß-NiAl and γ1-FePd. The LDA + U approach, through tuning of U, can achieve excellent matches with the experimentally measured Fg for all the metallic systems investigated in this paper. The use of experimentally accessible low order Fg as an additional set of metrics in approaches of validation of DFT calculations is discussed and has potential to assist in and to stimulate development of improved functionals.

4.
Ultramicroscopy ; 126: 48-59, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23396103

RESUMO

The measurement of accurate and precise structure factors and Debye Waller (DW) factors by quantitative convergent beam electron diffraction (QCBED) permits experimental determination of the electron density distribution and probing of interatomic bonding in crystals. The three QCBED methods used successfully for high precision measurements of low order structure factors to date, namely the zone axis pattern (ZAP) method, the excited row ER method and the multi-beam off-zone axis (MBOZA) technique, differ from each other regarding the crystal orientation relative to the incident electron beam. Consequently, the details of their respective dispersion surface representations differ regarding the number, relative amplitudes and phases of excited Bloch wave branches. Under the same experimental setup conditions, the factors most important to the degree of accuracy and precision achievable in electron density determination for crystals with QCBED methods ultimately depend on the sensitivity of the excited Bloch wave branches and the resultant contrast in the respective CBED patterns to changes in both structure and DW factors. In general, a QCBED pattern will be more sensitive to changes in both structure and DW factor, if it contains more and stronger excited Bloch wave branches, as dynamic interactions of the Bloch waves increase the sensitivity of the pattern. In this work we analyzed Bloch wave excitation and dispersion surfaces for the three most popular QCBED methods. The analysis indicates, that the QCBED patterns obtained using the MBOZA orientation generally contain more and stronger excited Bloch wave branches. Hence, MBOZA diffraction patterns are more sensitive than the ZAP and the ER patterns to changes in both DW and structure factors and therefore allow in differences to the other two methods simultaneous refinements effectively and robustly.

5.
Micron ; 43(11): 1108-20, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22595460

RESUMO

The growing field of ultrafast materials science, aimed at exploring short-lived transient processes in materials on the microsecond to femtosecond timescales, has spawned the development of time-resolved, in situ techniques in electron microscopy capable of capturing these events. This article gives a brief overview of two principal approaches that have emerged in the past decade: the stroboscopic ultrafast electron microscope and the nanosecond-time-resolved single-shot instrument. The high time resolution is garnered through the use of advanced pulsed laser systems and a pump-probe experimental platforms using laser-driven photoemission processes to generate time-correlated electron probe pulses synchronized with laser-driven events in the specimen. Each technique has its advantages and limitations and thus is complementary in terms of the materials systems and processes that they can investigate. The stroboscopic approach can achieve atomic resolution and sub-picosecond time resolution for capturing transient events, though it is limited to highly repeatable (>10(6) cycles) materials processes, e.g., optically driven electronic phase transitions that must reset to the material's ground state within the repetition rate of the femtosecond laser. The single-shot approach can explore irreversible events in materials, but the spatial resolution is limited by electron source brightness and electron-electron interactions at nanosecond temporal resolutions and higher. The first part of the article will explain basic operating principles of the stroboscopic approach and briefly review recent applications of this technique. As the authors have pursued the development of the single-shot approach, the latter part of the review discusses its instrumentation design in detail and presents examples of materials science studies and the near-term instrumentation developments of this technique.

6.
Acta Crystallogr A ; 67(Pt 3): 229-39, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21487181

RESUMO

Accurate Debye-Waller (DW) factors and low-index structure factors up to 222 of chemically ordered FePd have been measured at 120 K. Ordered FePd has a simple tetragonal unit cell (tP2, P4/mmm) with Fe and Pd atoms at 0, 0, 0 and at ½, ½, ½, respectively, requiring the measurement of four different DW factors. It was possible to simultaneously determine all four DW factors and several low-order structure factors using different, special off-zone-axis multi-beam convergent-beam electron diffraction patterns with high precision and accuracy. The different diffraction conditions exhibit different levels of sensitivity to changes in DW and structure factors. Here the sensitivity of different off-zone-axis convergent-beam electron diffraction patterns with respect to changes in DW factors and structure factors is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA