Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712200

RESUMO

The role of extracellular vesicles (EVs) in human health and disease has garnered considerable attention over the past two decades. However, while several types of EVs are known to interact dynamically with the extracellular matrix and there is great potential value in producing high-fidelity EV micropatterns, there are currently no label-free, high-resolution, and tunable platform technologies with this capability. We introduce Light-induced Extracellular Vesicle Adsorption (LEVA) as a powerful solution to rapidly advance the study of matrix- and surface-bound EVs and other particles. The versatility of LEVA is demonstrated using commercial GFP-EV standards, EVs from glioblastoma bioreactors, and E. coli outer membrane vesicles (OMVs), with the resulting patterns used for single EV characterization, single cell migration on migrasome-mimetic trails, and OMV-mediated neutrophil swarming. LEVA will enable rapid advancements in the study of matrix- and surface-bound EVs and other particles, and should encourage researchers from many disciplines to create novel diagnostic, biomimetic, immunoengineering, and therapeutic screening assays.

2.
J Diabetes Sci Technol ; 14(2): 212-225, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32116026

RESUMO

Islet transplantation is a promising curative treatment option for type 1 diabetes (T1D) as it can provide physiological blood glucose control. The widespread utilization of islet transplantation is limited due to systemic immunosuppression requirements, persisting graft immunodestruction, and poor islet engraftment. Traditional macro- and micropolymeric encapsulation strategies can alleviate the need for antirejection immunosuppression, yet the increased graft volume and diffusional distances imparted by these coatings can be detrimental to graft viability and glucose control. Additionally, systemic administration of pro-engraftment and antirejection therapeutics leaves patients vulnerable to adverse off-target side effects. Nanoscale engineering techniques can be used to immunocamouflage islets, modulate the transplant microenvironment, and provide localized pro-engraftment cues. In this review, we discuss the applications of nanotechnology to advance the clinical potential of islet transplantation, with a focus on cell surface engineering, bioactive functionalization, and use of nanoparticles in T1D cell-based treatments.


Assuntos
Transplante de Células , Diabetes Mellitus Tipo 1/terapia , Imunidade , Nanotecnologia/métodos , Animais , Transplante de Células/efeitos adversos , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/imunologia , Sobrevivência de Enxerto/imunologia , Humanos , Ilhotas Pancreáticas/imunologia , Transplante das Ilhotas Pancreáticas/imunologia , Nanotecnologia/tendências , Imunologia de Transplantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA