Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 615(7950): 80-86, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859581

RESUMO

The distribution of dryland trees and their density, cover, size, mass and carbon content are not well known at sub-continental to continental scales1-14. This information is important for ecological protection, carbon accounting, climate mitigation and restoration efforts of dryland ecosystems15-18. We assessed more than 9.9 billion trees derived from more than 300,000 satellite images, covering semi-arid sub-Saharan Africa north of the Equator. We attributed wood, foliage and root carbon to every tree in the 0-1,000 mm year-1 rainfall zone by coupling field data19, machine learning20-22, satellite data and high-performance computing. Average carbon stocks of individual trees ranged from 0.54 Mg C ha-1 and 63 kg C tree-1 in the arid zone to 3.7 Mg C ha-1 and 98 kg tree-1 in the sub-humid zone. Overall, we estimated the total carbon for our study area to be 0.84 (±19.8%) Pg C. Comparisons with 14 previous TRENDY numerical simulation studies23 for our area found that the density and carbon stocks of scattered trees have been underestimated by three models and overestimated by 11 models, respectively. This benchmarking can help understand the carbon cycle and address concerns about land degradation24-29. We make available a linked database of wood mass, foliage mass, root mass and carbon stock of each tree for scientists, policymakers, dryland-restoration practitioners and farmers, who can use it to estimate farmland tree carbon stocks from tablets or laptops.


Assuntos
Carbono , Clima Desértico , Ecossistema , Árvores , Carbono/análise , Carbono/metabolismo , Árvores/anatomia & histologia , Árvores/química , Árvores/metabolismo , Dessecação , Imagens de Satélites , África Subsaariana , Aprendizado de Máquina , Madeira/análise , Raízes de Plantas , Agricultura , Recuperação e Remediação Ambiental , Bases de Dados Factuais , Biomassa , Computadores
2.
Proc Natl Acad Sci U S A ; 119(37): e2116626119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067321

RESUMO

Intact tropical rainforests have been exposed to severe droughts in recent decades, which may threaten their integrity, their ability to sequester carbon, and their capacity to provide shelter for biodiversity. However, their response to droughts remains uncertain due to limited high-quality, long-term observations covering extensive areas. Here, we examined how the upper canopy of intact tropical rainforests has responded to drought events globally and during the past 3 decades. By developing a long pantropical time series (1992 to 2018) of monthly radar satellite observations, we show that repeated droughts caused a sustained decline in radar signal in 93%, 84%, and 88% of intact tropical rainforests in the Americas, Africa, and Asia, respectively. Sudden decreases in radar signal were detected around the 1997-1998, 2005, 2010, and 2015 droughts in tropical Americas; 1999-2000, 2004-2005, 2010-2011, and 2015 droughts in tropical Africa; and 1997-1998, 2006, and 2015 droughts in tropical Asia. Rainforests showed similar low resistance (the ability to maintain predrought condition when drought occurs) to severe droughts across continents, but American rainforests consistently showed the lowest resilience (the ability to return to predrought condition after the drought event). Moreover, while the resistance of intact tropical rainforests to drought is decreasing, albeit weakly in tropical Africa and Asia, forest resilience has not increased significantly. Our results therefore suggest the capacity of intact rainforests to withstand future droughts is limited. This has negative implications for climate change mitigation through forest-based climate solutions and the associated pledges made by countries under the Paris Agreement.


Assuntos
Secas , Floresta Úmida , Mudança Climática , Árvores/fisiologia , Clima Tropical
3.
Proc Natl Acad Sci U S A ; 119(26): e2101388119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733266

RESUMO

The 2015/16 El Niño brought severe drought and record-breaking temperatures in the tropics. Here, using satellite-based L-band microwave vegetation optical depth, we mapped changes of above-ground biomass (AGB) during the drought and in subsequent years up to 2019. Over more than 60% of drought-affected intact forests, AGB reduced during the drought, except in the wettest part of the central Amazon, where it declined 1 y later. By the end of 2019, only 40% of AGB reduced intact forests had fully recovered to the predrought level. Using random-forest models, we found that the magnitude of AGB losses during the drought was mainly associated with regionally distinct patterns of soil water deficits and soil clay content. For the AGB recovery, we found strong influences of AGB losses during the drought and of [Formula: see text]. [Formula: see text] is a parameter related to canopy structure and is defined as the ratio of two relative height (RH) metrics of Geoscience Laser Altimeter System (GLAS) waveform data-RH25 (25% energy return height) and RH100 (100% energy return height; i.e., top canopy height). A high [Formula: see text] may reflect forests with a tall understory, thick and closed canopy, and/or without degradation. Such forests with a high [Formula: see text] ([Formula: see text] ≥ 0.3) appear to have a stronger capacity to recover than low-[Formula: see text] ones. Our results highlight the importance of forest structure when predicting the consequences of future drought stress in the tropics.


Assuntos
Biomassa , Secas , El Niño Oscilação Sul , Floresta Úmida , Solo , Clima Tropical , Água
4.
Glob Chang Biol ; 30(1): e17006, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37909670

RESUMO

Uncovering the mechanisms that lead to Amazon forest resilience variations is crucial to predict the impact of future climatic and anthropogenic disturbances. Here, we apply a previously used empirical resilience metrics, lag-1 month temporal autocorrelation (TAC), to vegetation optical depth data in C-band (a good proxy of the whole canopy water content) in order to explore how forest resilience variations are impacted by human disturbances and environmental drivers in the Brazilian Amazon. We found that human disturbances significantly increase the risk of critical transitions, and that the median TAC value is ~2.4 times higher in human-disturbed forests than that in intact forests, suggesting a much lower resilience in disturbed forests. Additionally, human-disturbed forests are less resilient to land surface heat stress and atmospheric water stress than intact forests. Among human-disturbed forests, forests with a more closed and thicker canopy structure, which is linked to a higher forest cover and a lower disturbance fraction, are comparably more resilient. These results further emphasize the urgent need to limit deforestation and degradation through policy intervention to maintain the resilience of the Amazon rainforests.


Assuntos
Floresta Úmida , Resiliência Psicológica , Efeitos Antropogênicos , Conservação dos Recursos Naturais/métodos , Florestas
5.
Glob Chang Biol ; 30(7): e17423, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010751

RESUMO

The extreme dry and hot 2015/16 El Niño episode caused large losses in tropical live aboveground carbon (AGC) stocks. Followed by climatic conditions conducive to high vegetation productivity since 2016, tropical AGC are expected to recover from large losses during the El Niño episode; however, the recovery rate and its spatial distribution remain unknown. Here, we used low-frequency microwave satellite data to track AGC changes, and showed that tropical AGC stocks returned to pre-El Niño levels by the end of 2020, resulting in an AGC sink of 0.18 0.14 0.26 $$ {0.18}_{0.14}^{0.26} $$ Pg C year-1 during 2014-2020. This sink was dominated by strong AGC increases ( 0.61 0.49 0.84 $$ {0.61}_{0.49}^{0.84} $$ Pg C year-1) in non-forest woody vegetation during 2016-2020, compensating the forest AGC losses attributed to the El Niño event, forest loss, and degradation. Our findings highlight that non-forest woody vegetation is an increasingly important contributor to interannual to decadal variability in the global carbon cycle.


Assuntos
Carbono , El Niño Oscilação Sul , Clima Tropical , Carbono/metabolismo , Carbono/análise , Ciclo do Carbono , Florestas , Sequestro de Carbono , Mudança Climática
6.
Glob Chang Biol ; 29(4): 1106-1118, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36415966

RESUMO

In the Amazon, deforestation and climate change lead to increased vulnerability to forest degradation, threatening its existing carbon stocks and its capacity as a carbon sink. We use satellite L-Band Vegetation Optical Depth (L-VOD) data that provide an integrated (top-down) estimate of biomass carbon to track changes over 2011-2019. Because the spatial resolution of L-VOD is coarse (0.25°), it allows limited attribution of the observed changes. We therefore combined high-resolution annual maps of forest cover and disturbances with biomass maps to model carbon losses (bottom-up) from deforestation and degradation, and gains from regrowing secondary forests. We show an increase of deforestation and associated degradation losses since 2012 which greatly outweigh secondary forest gains. Degradation accounted for 40% of gross losses. After an increase in 2011, old-growth forests show a net loss of above-ground carbon between 2012 and 2019. The sum of component carbon fluxes in our model is consistent with the total biomass change from L-VOD of 1.3 Pg C over 2012-2019. Across nine Amazon countries, we found that while Brazil contains the majority of biomass stocks (64%), its losses from disturbances were disproportionately high (79% of gross losses). Our multi-source analysis provides a pessimistic assessment of the Amazon carbon balance and highlights the urgent need to stop the recent rise of deforestation and degradation, particularly in the Brazilian Amazon.


Assuntos
Conservação dos Recursos Naturais , Florestas , Biomassa , Sequestro de Carbono , Carbono/metabolismo
7.
Glob Chang Biol ; 28(13): 4110-4123, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35429206

RESUMO

The dominance of vapor pressure deficit (VPD) and soil water content (SWC) for plant water stress is still under debate. These two variables are strongly coupled and influenced by climatic drivers. The impacts of climatic drivers on the relationships between gross primary production (GPP) and water stress from VPD/SWC and the interaction between VPD and SWC are not fully understood. Here, applying statistical methods and extreme gradient boosting models-Shapley additive explanations framework to eddy-covariance observations from the global FLUXNET2015 data set, we found that the VPD-GPP relationship was strongly influenced by climatic interactions and that VPD was more important for plant water stress than SWC across most plant functional types when we removed the effect of main climatic drivers, e.g. air temperature, incoming shortwave radiation and wind speed. However, we found no evidence for a significant influence of elevated CO2 on stress alleviation, possibly because of the short duration of the records (approximately one decade). Additionally, the interactive effect between VPD and SWC differed from their individual effect. When SWC was high, the SHAP interaction value of SWC and VPD on GPP was decreased with increasing VPD, but when SWC was low, the trend was the opposite. Additionally, we revealed a threshold effect for VPD stress on GPP loss; above the threshold value, the stress on GPP was flattened off. Our results have important implications for independently identifying VPD and SWC limitations on plant productivity, which is meaningful for capturing the magnitude of ecosystem responses to water stress in dynamic global vegetation models.


Assuntos
Desidratação , Ecossistema , Humanos , Solo , Temperatura , Pressão de Vapor
8.
Glob Chang Biol ; 28(4): 1583-1595, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854168

RESUMO

Our limited understanding of the impacts of drought on tropical forests significantly impedes our ability in accurately predicting the impacts of climate change on this biome. Here, we investigated the impact of drought on the dynamics of forest canopies with different heights using time-series records of remotely sensed Ku-band vegetation optical depth (Ku-VOD), a proxy of top-canopy foliar mass and water content, and separated the signal of Ku-VOD changes into drought-induced reductions and subsequent non-drought gains. Both drought-induced reductions and non-drought increases in Ku-VOD varied significantly with canopy height. Taller tropical forests experienced greater relative Ku-VOD reductions during drought and larger non-drought increases than shorter forests, but the net effect of drought was more negative in the taller forests. Meta-analysis of in situ hydraulic traits supports the hypothesis that taller tropical forests are more vulnerable to drought stress due to smaller xylem-transport safety margins. Additionally, Ku-VOD of taller forests showed larger reductions due to increased atmospheric dryness, as assessed by vapor pressure deficit, and showed larger gains in response to enhanced water supply than shorter forests. Including the height-dependent variation of hydraulic transport in ecosystem models will improve the simulated response of tropical forests to drought.


Assuntos
Secas , Ecossistema , Mudança Climática , Florestas , Árvores , Clima Tropical
9.
Glob Chang Biol ; 28(6): 2111-2123, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927310

RESUMO

Understanding the critical soil moisture (SM) threshold (θcrit ) of plant water stress and land surface energy partitioning is a basis to evaluate drought impacts and improve models for predicting future ecosystem condition and climate. Quantifying the θcrit across biomes and climates is challenging because observations of surface energy fluxes and SM remain sparse. Here, we used the latest database of eddy covariance measurements to estimate θcrit across Europe by evaluating evaporative fraction (EF)-SM relationships and investigating the covariance between vapor pressure deficit (VPD) and gross primary production (GPP) during SM dry-down periods. We found that the θcrit and soil matric potential threshold in Europe are 16.5% and -0.7 MPa, respectively. Surface energy partitioning characteristics varied among different vegetation types; EF in savannas had the highest sensitivities to SM in water-limited stage, and the lowest in forests. The sign of the covariance between daily VPD and GPP consistently changed from positive to negative during dry-down across all sites when EF shifted from relatively high to low values. This sign of the covariance changed after longer period of SM decline in forests than in grasslands and savannas. Estimated θcrit from the VPD-GPP covariance method match well with the EF-SM method, showing this covariance method can be used to detect the θcrit . We further found that soil texture dominates the spatial variability of θcrit while shortwave radiation and VPD are the major drivers in determining the spatial pattern of EF sensitivities. Our results highlight for the first time that the sign change of the covariance between daily VPD and GPP can be used as an indicator of how ecosystems transition from energy to SM limitation. We also characterized the corresponding θcrit and its drivers across diverse ecosystems in Europe, an essential variable to improve the representation of water stress in land surface models.


Assuntos
Ecossistema , Solo , Desidratação , Secas , Florestas , Humanos
10.
Glob Chang Biol ; 26(12): 6959-6973, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32902073

RESUMO

The CONterminous United States (CONUS) presents a large range of climate conditions and biomes where terrestrial primary productivity and its inter-annual variability are controlled regionally by rainfall and/or temperature. Here, the response of ecosystem productivity to those climate variables was investigated across different biomes from 2010 to 2018 using three climate datasets of precipitation, air temperature or drought severity, combined with several proxies of ecosystem productivity: a remote sensing product of aboveground biomass, an net primary productivity (NPP) remote sensing product, an NPP model-based product and four gross primary productivity products. We used an asymmetry index (AI) where positive AI indicates a greater increase of ecosystem productivity in wet years compared to the decline in dry years, and negative AI indicates a greater decline of ecosystem productivity in dry years compared to the increase in wet years. We found consistent spatial patterns of AI across the CONUS for the different products, with negative asymmetries over the Great Plains and positive asymmetries over the southwestern CONUS. Shrubs and, to a lesser extent, evergreen forests show a persistent positive asymmetry, whilst (natural) grasslands appear to have transitioned from positive to negative anomalies during the last decade. The general tendency of dominant negative asymmetry response for ecosystem productivity across the CONUS appears to be influenced by the negative asymmetry of precipitation anomalies. AI was found to be a function of mean rainfall: more positive AIs were found in dry areas where plants are adapted to drought and take advantage of rainfall pulses, and more negative AIs were found in wet areas, with a threshold delineating the two regimes corresponding to a mean annual rainfall of 200-400 mm/year.


Assuntos
Clima , Ecossistema , Secas , Florestas , Sudoeste dos Estados Unidos , Estados Unidos
11.
Remote Sens Environ ; 229: 133-147, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31359890

RESUMO

The uncertainty of surface soil moisture (SM) retrievals from satellite brightness temperature (TB) observations depends primarily on the choice of radiative transfer model (RTM) parameters, prior SM information and TB inputs. This paper studies the sensitivity of several established and experimental SM retrieval products from the Soil Moisture Ocean Salinity (SMOS) mission to these choices at 11 reference sites, located in 7 watersheds across the United States (US). Different RTM parameter sets cause large biases between retrievals. Whereas typical RTM parameter sets are calibrated for SM retrievals, it is shown that a parameter set carefully optimized for TB forward modeling can also be used for retrieving SM. It is also shown that the inclusion of dynamic prior SM estimates in a Bayesian retrieval scheme can strongly improve SM retrievals, regardless of the choice of RTM parameters. The second part of this paper evaluates the ensemble uncertainty metrics for SM retrievals obtained by propagating a wide range of RTM parameters through the RTM, and the relationship with time series metrics obtained by comparing SM retrievals with in situ data. As expected for bounded variables, the total spread in the ensemble SM retrievals is smallest for wet and dry SM values and highest for intermediate SM values. After removal of the strong long-term SM bias associated with the RTM parameter values for individual ensemble members, the remaining anomaly ensemble SM spread shows higher values when SM deviates further from its long-term mean SM. This reveals higher-order biases (e.g. differences in variances) in the retrieval error, which should be considered when characterizing retrieval error. The time-average anomaly ensemble SM spread of 0.037 m3/m3 approximates the actual time series unbiased root-mean-square-difference of 0.042 m3/m3 between ensemble mean retrievals and in situ data across the reference sites.

12.
Sensors (Basel) ; 16(5)2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27213393

RESUMO

Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a remote sensing tool, which is complementary to traditional monostatic radars, for the retrieval of geophysical parameters related to surface properties. In the present paper, we describe a new polarimetric GNSS-R system, referred to as the GLObal navigation satellite system Reflectometry Instrument (GLORI), dedicated to the study of land surfaces (soil moisture, vegetation water content, forest biomass) and inland water bodies. This system was installed as a permanent payload on a French ATR42 research aircraft, from which simultaneous measurements can be carried out using other instruments, when required. Following initial laboratory qualifications, two airborne campaigns involving nine flights were performed in 2014 and 2015 in the Southwest of France, over various types of land cover, including agricultural fields and forests. Some of these flights were made concurrently with in situ ground truth campaigns. Various preliminary applications for the characterisation of agricultural and forest areas are presented. Initial analysis of the data shows that the performance of the GLORI instrument is well within specifications, with a cross-polarization isolation better than -15 dB at all elevations above 45°, a relative polarimetric calibration accuracy better than 0.5 dB, and an apparent reflectivity sensitivity better than -30 dB, thus demonstrating its strong potential for the retrieval of land surface characteristics.

13.
Sci Data ; 11(1): 936, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198462

RESUMO

The L-band vegetation optical depth data garners significant interest for its ability to effectively monitor vegetation, thanks to minimal saturation within this frequency range. However, the existing datasets have limited temporal coverage, constrained by the start of the respective satellite missions. Global L-band equivalent AI-Based Vegetation Optical Depth or GLAB-VOD is a global long-term consistent microwave vegetation optical depth dataset created using machine learning to expand the SMAP-IB VOD dataset temporal coverage from 2015-2020 to 2002-2020. The GLAB-VOD dataset has an 18-day temporal resolution and 25 km spatial resolution on the EASE2 grid and covers 2002-2020. An auxiliary consistent daily brightness temperature product, called GLAB-TB, is developed in parallel and ensures the consistency of the VOD product across time periods with different microwave satellites. As a result of its temporal consistency, this dataset can be used to study long-term global and regional trends in vegetation biomass and utilized in any other applications where long-term consistency is necessary. The GLAB-VOD dataset shows excellent spatial correlation globally when compared with biomass (up to R = 0.92) and canopy height (R = 0.93), outperforming its target dataset, SMAP-IB VOD.

14.
Sci Total Environ ; 950: 175259, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127208

RESUMO

Water resources play a crucial role in the global water cycle and are affected by human activities and climate change. However, the impacts of hydropower infrastructures on the surface water extent and volume cycle are not well known. We used a multi-satellite approach to quantify the surface water storage variations over the 2000-2020 period and relate these variations to climate-induced and anthropogenic factors over the whole basin. Our results highlight that dam operations have strongly modified the water regime of the Mekong River, exhibiting a 55 % decrease in the seasonal cycle amplitude of inundation extent (from 3178 km2 to 1414 km2) and a 70 % decrease in surface water volume (from 1109 km3 to 327 km3) over 2000-2020. In the floodplains of the Lower Mekong Basin, where rice is cultivated, there has been a decline in water residence time by 30 to 50 days. The recent commissioning of big dams (2010 and 2014) has allowed us to choose 2015 as a turning point year. Results show a trend inversion in rice production, from a rise of 40 % between 2000 and 2014 to a decline of 10 % between 2015 and 2020, and a strong reduction in aquaculture growth, from +730 % between 2000 and 2014, to +53 % between 2015 and 2020. All these results show the negative impact of dams on the Mekong basin, causing a 70 % decline in surface water volumes, with major repercussions for agriculture and fisheries over the period 2000-2020. Therefore, new future projects such as the Funan Techo canal in Cambodia, scheduled to start construction at the end of 2024, will particularly affect 1300 km2 of floodplains in the lower Mekong basin, with a reduction in the amount of water received, and other areas will be subjected to flooding. The human, material and economic damage could be catastrophic.

15.
Nat Commun ; 15(1): 4826, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844502

RESUMO

During extensive periods without rain, known as dry-downs, decreasing soil moisture (SM) induces plant water stress at the point when it limits evapotranspiration, defining a critical SM threshold (θcrit). Better quantification of θcrit is needed for improving future projections of climate and water resources, food production, and ecosystem vulnerability. Here, we combine systematic satellite observations of the diurnal amplitude of land surface temperature (dLST) and SM during dry-downs, corroborated by in-situ data from flux towers, to generate the observation-based global map of θcrit. We find an average global θcrit of 0.19 m3/m3, varying from 0.12 m3/m3 in arid ecosystems to 0.26 m3/m3 in humid ecosystems. θcrit simulated by Earth System Models is overestimated in dry areas and underestimated in wet areas. The global observed pattern of θcrit reflects plant adaptation to soil available water and atmospheric demand. Using explainable machine learning, we show that aridity index, leaf area and soil texture are the most influential drivers. Moreover, we show that the annual fraction of days with water stress, when SM stays below θcrit, has increased in the past four decades. Our results have important implications for understanding the inception of water stress in models and identifying SM tipping points.


Assuntos
Ecossistema , Solo , Água , Solo/química , Água/metabolismo , Temperatura , Transpiração Vegetal/fisiologia , Plantas/metabolismo , Desidratação , Folhas de Planta/fisiologia , Clima , Chuva , Aprendizado de Máquina
16.
Natl Sci Rev ; 10(5): nwad026, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37056438

RESUMO

Environmental change is a consequence of many interrelated factors. How vegetation responds to natural and human activity still needs to be well established, quantified and understood. Recent satellite missions providing hydrologic and ecological indicators enable better monitoring of Earth system changes, yet there is no automatic way to address this issue directly from observations. Here, we develop an observation-based methodology to capture evidence of changes in global terrestrial ecosystems and attribute these changes to natural or anthropogenic activity. We use the longest time record of global microwave L-band soil moisture and vegetation optical depth as satellite data and build spatially explicit maps of change in soil and vegetation water content and biomass reflecting large ecosystem changes during the last decade, 2010-20. Regions of prominent trends (from [Formula: see text] to 9% per year) are observed, especially in humid and semi-arid climates. We further combine such trends with land cover change maps, vegetation greenness and precipitation variability to assess their relationship with major documented ecosystem changes. Several regions emerge from our results. They cluster changes according to human activity drivers, including deforestation (Amazon, Central Africa) and wildfires (East Australia), artificial reforestation (South-East China), abandonment of farm fields (Central Russia) and climate shifts related to changes in precipitation variability (East Africa, North America and Central Argentina). Using the high sensitivity of soil and vegetation water content to ecosystem changes, microwave satellite observations enable us to quantify and attribute global vegetation responses to climate or anthropogenic activities as a direct measure of environmental changes and the mechanisms driving them.

17.
Sci Adv ; 8(44): eabq7827, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36332021

RESUMO

Plant water stress occurs at the point when soil moisture (SM) limits transpiration, defining a critical SM threshold (θcrit). Knowledge of the spatial distribution of θcrit is crucial for future projections of climate and water resources. Here, we use global eddy covariance observations to quantify θcrit and evaporative fraction (EF) regimes. Three canonical variables describe how EF is controlled by SM: the maximum EF (EFmax), θcrit, and slope (S) between EF and SM. We find systematic differences of these three variables across biomes. Variation in θcrit, S, and EFmax is mostly explained by soil texture, vapor pressure deficit, and precipitation, respectively, as well as vegetation structure. Dryland ecosystems tend to operate at low θcrit and show adaptation to water deficits. The negative relationship between θcrit and S indicates that dryland ecosystems minimize θcrit through mechanisms of sustained SM extraction and transport by xylem. Our results further suggest an optimal adaptation of local EF-SM response that maximizes growing-season evapotranspiration and photosynthesis.

18.
Sensors (Basel) ; 11(1): 719-42, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22346599

RESUMO

The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer-STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean) in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight horizontal flights, circular flights, wing and nose wags over the ocean. Analysis of the first two campaigns in 2007 and 2008 leads us to improve the CAROLS radiometer regarding isolation between channels and filter bandwidth. After implementation of these improvements, results show that the instrument is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS) satellite validation as well as for specific studies on surface soil moisture or ocean salinity.

19.
Sci Adv ; 6(6): eaay4603, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32076648

RESUMO

Severe drought and extreme heat associated with the 2015-2016 El Niño event have led to large carbon emissions from the tropical vegetation to the atmosphere. With the return to normal climatic conditions in 2017, tropical forest aboveground carbon (AGC) stocks are expected to partly recover due to increased productivity, but the intensity and spatial distribution of this recovery are unknown. We used low-frequency microwave satellite data (L-VOD) to feature precise monitoring of AGC changes and show that the AGC recovery of tropical ecosystems was slow and that by the end of 2017, AGC had not reached predrought levels of 2014. From 2014 to 2017, tropical AGC stocks decreased by 1.3 1.2 1.5 Pg C due to persistent AGC losses in Africa ( - 0.9 - 1.1 - 0.8 Pg C) and America ( - 0.5 - 0.6 - 0.4 Pg C). Pantropically, drylands recovered their carbon stocks to pre-El Niño levels, but African and American humid forests did not, suggesting carryover effects from enhanced forest mortality.


Assuntos
Ecossistema , El Niño Oscilação Sul , Florestas , Clima Tropical , El Niño Oscilação Sul/história , História do Século XXI , Análise Espacial
20.
Nat Ecol Evol ; 4(2): 202-209, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31988446

RESUMO

Anthropogenic land use and land cover changes (LULCC) have a large impact on the global terrestrial carbon sink, but this effect is not well characterized according to biogeographical region. Here, using state-of-the-art Earth observation data and a dynamic global vegetation model, we estimate the impact of LULCC on the contribution of biomes to the terrestrial carbon sink between 1992 and 2015. Tropical and boreal forests contributed equally, and with the largest share of the mean global terrestrial carbon sink. CO2 fertilization was found to be the main driver increasing the terrestrial carbon sink from 1992 to 2015, but the net effect of all drivers (CO2 fertilization and nitrogen deposition, LULCC and meteorological forcing) caused a reduction and an increase, respectively, in the terrestrial carbon sink for tropical and boreal forests. These diverging trends were not observed when applying a conventional LULCC dataset, but were also evident in satellite passive microwave estimates of aboveground biomass. These datasets thereby converge on the conclusion that LULCC have had a greater impact on tropical forests than previously estimated, causing an increase and decrease of the contributions of boreal and tropical forests, respectively, to the growing terrestrial carbon sink.


Assuntos
Sequestro de Carbono , Taiga , Ecossistema , Florestas , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA