Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474133

RESUMO

The human photoreceptor function is dependent on a highly specialised cilium. Perturbation of cilial function can often lead to death of the photoreceptor and loss of vision. Retinal ciliopathies are a genetically diverse range of inherited retinal disorders affecting aspects of the photoreceptor cilium. Despite advances in the understanding of retinal ciliopathies utilising animal disease models, they can often lack the ability to accurately mimic the observed patient phenotype, possibly due to structural and functional deviations from the human retina. Human-induced pluripotent stem cells (hiPSCs) can be utilised to generate an alternative disease model, the 3D retinal organoid, which contains all major retinal cell types including photoreceptors complete with cilial structures. These retinal organoids facilitate the study of disease mechanisms and potential therapies in a human-derived system. Three-dimensional retinal organoids are still a developing technology, and despite impressive progress, several limitations remain. This review will discuss the state of hiPSC-derived retinal organoid technology for accurately modelling prominent retinal ciliopathies related to genes, including RPGR, CEP290, MYO7A, and USH2A. Additionally, we will discuss the development of novel gene therapy approaches targeting retinal ciliopathies, including the delivery of large genes and gene-editing techniques.


Assuntos
Ciliopatias , Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Retina/metabolismo , Degeneração Retiniana/metabolismo , Terapia Genética , Organoides/metabolismo , Ciliopatias/metabolismo , Proteínas do Olho/metabolismo
2.
PLoS Biol ; 18(3): e3000470, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150534

RESUMO

In the spinal cord, the central canal forms through a poorly understood process termed dorsal collapse that involves attrition and remodelling of pseudostratified ventricular layer (VL) cells. Here, we use mouse and chick models to show that dorsal ventricular layer (dVL) cells adjacent to dorsal midline Nestin(+) radial glia (dmNes+RG) down-regulate apical polarity proteins, including Crumbs2 (CRB2) and delaminate in a stepwise manner; live imaging shows that as one cell delaminates, the next cell ratchets up, the dmNes+RG endfoot ratchets down, and the process repeats. We show that dmNes+RG secrete a factor that promotes loss of cell polarity and delamination. This activity is mimicked by a secreted variant of Crumbs2 (CRB2S) which is specifically expressed by dmNes+RG. In cultured MDCK cells, CRB2S associates with apical membranes and decreases cell cohesion. Analysis of Crb2F/F/Nestin-Cre+/- mice, and targeted reduction of Crb2/CRB2S in slice cultures reveal essential roles for transmembrane CRB2 (CRB2TM) and CRB2S on VL cells and dmNes+RG, respectively. We propose a model in which a CRB2S-CRB2TM interaction promotes the progressive attrition of the dVL without loss of overall VL integrity. This novel mechanism may operate more widely to promote orderly progenitor delamination.


Assuntos
Proteínas de Membrana/metabolismo , Medula Espinal/citologia , Medula Espinal/embriologia , Animais , Adesão Celular , Embrião de Galinha , Cães , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Junções Íntimas/metabolismo , Imagem com Lapso de Tempo
3.
J Am Soc Nephrol ; 32(5): 1053-1070, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33687977

RESUMO

BACKGROUND: Crumbs2 is expressed at embryonic stages as well as in the retina, brain, and glomerular podocytes. Recent studies identified CRB2 mutations as a novel cause of steroid-resistant nephrotic syndrome (SRNS). METHODS: To study the function of Crb2 at the renal filtration barrier, mice lacking Crb2 exclusively in podocytes were generated. Gene expression and histologic studies as well as transmission and scanning electron microscopy were used to analyze these Crb2podKO knockout mice and their littermate controls. Furthermore, high-resolution expansion microscopy was used to investigate Crb2 distribution in murine glomeruli. For pull-down experiments, live cell imaging, and transcriptome analyses, cell lines were applied that inducibly express fluorescent protein-tagged CRB2 wild type and mutants. RESULTS: Crb2podKO mice developed proteinuria directly after birth that preceded a prominent development of disordered and effaced foot processes, upregulation of renal injury and inflammatory markers, and glomerulosclerosis. Pull-down assays revealed an interaction of CRB2 with Nephrin, mediated by their extracellular domains. Expansion microscopy showed that in mice glomeruli, Crb2 and Nephrin are organized in adjacent clusters. SRNS-associated CRB2 protein variants and a mutant that lacks a putative conserved O-glycosylation site were not transported to the cell surface. Instead, mutants accumulated in the ER, showed altered glycosylation pattern, and triggered an ER stress response. CONCLUSIONS: Crb2 is an essential component of the podocyte's slit diaphragm, interacting with Nephrin. Loss of slit diaphragm targeting and increasing ER stress are pivotal factors for onset and progression of CRB2-related SRNS.


Assuntos
Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Proteínas de Membrana/fisiologia , Síndrome Nefrótica/etiologia , Proteinúria/etiologia , Animais , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Feminino , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Podócitos/metabolismo , Proteinúria/metabolismo , Proteinúria/patologia
4.
Hum Mol Genet ; 28(1): 105-123, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239717

RESUMO

Variations in the human Crumbs homolog-1 (CRB1) gene lead to an array of retinal dystrophies including early onset of retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) in children. To investigate the physiological roles of CRB1 and CRB2 in retinal Müller glial cells (MGCs), we analysed mouse retinas lacking both proteins in MGC. The peripheral retina showed a faster progression of dystrophy than the central retina. The central retina showed retinal folds, disruptions at the outer limiting membrane, protrusion of photoreceptor nuclei into the inner and outer segment layers and ingression of photoreceptor nuclei into the photoreceptor synaptic layer. The peripheral retina showed a complete loss of the photoreceptor synapse layer, intermingling of photoreceptor nuclei within the inner nuclear layer and ectopic photoreceptor cells in the ganglion cell layer. Electroretinography showed severe attenuation of the scotopic a-wave at 1 month of age with responses below detection levels at 3 months of age. The double knockout mouse retinas mimicked a phenotype equivalent to a clinical LCA phenotype due to loss of CRB1. Localization of CRB1 and CRB2 in non-human primate (NHP) retinas was analyzed at the ultrastructural level. We found that NHP CRB1 and CRB2 proteins localized to the subapical region adjacent to adherens junctions at the outer limiting membrane in MGC and photoreceptors. Our data suggest that loss of CRB2 in MGC aggravates the CRB1-associated RP-like phenotype towards an LCA-like phenotype.


Assuntos
Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Retinose Pigmentar/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Modelos Animais de Doenças , Eletrorretinografia , Células Ependimogliais/metabolismo , Células Ependimogliais/fisiologia , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/fisiopatologia , Macaca fascicularis , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/fisiologia , Neuroglia/fisiologia , Fenótipo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Distrofias Retinianas/metabolismo , Retinose Pigmentar/metabolismo , Retinose Pigmentar/fisiopatologia
5.
Retina ; 41(1): 213-223, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32301896

RESUMO

PURPOSE: To investigate the natural history of RHO-associated retinitis pigmentosa (RP). METHODS: A multicenter, medical chart review of 100 patients with autosomal dominant RHO-associated RP. RESULTS: Based on visual fields, time-to-event analysis revealed median ages of 52 and 79 years to reach low vision (central visual field <20°) and blindness (central visual field <10°), respectively. For the best-corrected visual acuity (BCVA), the median age to reach mild impairment (20/67 ≤ BCVA < 20/40) was 72 years, whereas this could not be computed for lower acuities. Disease progression was significantly faster in patients with a generalized RP phenotype (n = 75; 75%) than that in patients with a sector RP phenotype (n = 25; 25%), in terms of decline rates of the BCVA (P < 0.001) and V4e retinal seeing areas (P < 0.005). The foveal thickness of the photoreceptor-retinal pigment epithelium (PR + RPE) complex correlated significantly with BCVA (Spearman's ρ = 0.733; P < 0.001). CONCLUSION: Based on central visual fields, the optimal window of intervention for RHO-associated RP is before the 5th decade of life. Significant differences in disease progression are present between generalized and sector RP phenotypes. Our findings suggest that the PR + RPE complex is a potential surrogate endpoint for the BCVA in future studies.


Assuntos
Proteínas de Fase Aguda/genética , Previsões , Epitélio Pigmentado da Retina/patologia , Retinose Pigmentar/diagnóstico , Acuidade Visual , Campos Visuais/fisiologia , Proteínas de Fase Aguda/metabolismo , Idoso , Eletrorretinografia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Retinose Pigmentar/sangue , Retinose Pigmentar/genética , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos
6.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808129

RESUMO

Mutations in the Crumbs homologue 1 (CRB1) gene cause inherited retinal dystrophies, such as early-onset retinitis pigmentosa and Leber congenital amaurosis. A Brown Norway rat strain was reported with a spontaneous insertion-deletion (indel) mutation in exon 6 of Crb1. It has been reported that these Crb1 mutant rats show vascular abnormalities associated with retinal telangiectasia and possess an early-onset retinal degenerative phenotype with outer limiting membrane breaks and focal loss of retinal lamination at 2 months of age. Here, we further characterized the morphological phenotype of new-born and adult Crb1 mutant rats in comparison with age-matched Brown Norway rats without a mutation in Crb1. A significantly decreased retinal function and visual acuity was observed in Crb1 mutant rats at 1 and 3 months of age, respectively. Moreover, in control rats, the subcellular localization of canonical CRB1 was observed at the subapical region in Müller glial cells while CRB2 was observed at the subapical region in both photoreceptors and Müller glial cells by immuno-electron microscopy. CRB1 localization was lost in the Crb1 mutant rats, whereas CRB2 was still observed. In addition, we determined the tropism of subretinal or intravitreally administered AAV5-, AAV9- or AAV6-variant ShH10Y445F vectors in new-born control and Crb1 mutant rat retinas. We showed that subretinal injection of AAV5 and AAV9 at postnatal days 5 (P5) or 8 (P8) predominantly infected the retinal pigment epithelium (RPE) and photoreceptor cells; while intravitreal injection of ShH10Y445F at P5 or P8 resulted in efficient infection of mainly Müller glial cells. Using knowledge of the subcellular localization of CRB1 and the ability of ShH10Y445F to infect Müller glial cells, canonical hCRB1 and hCRB2 AAV-mediated gene therapy were explored in new-born Crb1 mutant rats. Enhanced retinal function after gene therapy delivery in the Crb1 rat was not observed. No timely rescue of the retinal phenotype was observed using retinal function and visual acuity, suggesting the need for earlier onset of expression of recombinant hCRB proteins in Müller glial cells to rescue the severe retinal phenotype in Crb1 mutant rats.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Dependovirus/fisiologia , Terapia Genética/métodos , Proteínas do Tecido Nervoso/genética , Distrofias Retinianas/genética , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/genética , Dependovirus/genética , Células Ependimogliais/metabolismo , Proteínas do Olho/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/farmacologia , Injeções Intravítreas , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Ratos , Ratos Mutantes , Retina/fisiopatologia , Distrofias Retinianas/etiologia , Distrofias Retinianas/terapia , Epitélio Pigmentado da Retina/metabolismo , Tropismo Viral
7.
Hum Mol Genet ; 27(18): 3137-3153, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29893966

RESUMO

The mammalian apical-basal determinant Crumbs homolog-1 (CRB1) plays a crucial role in retinal structure and function by the maintenance of adherens junctions between photoreceptors and Müller glial cells. Patients with mutations in the CRB1 gene develop retinal dystrophies, including early-onset retinitis pigmentosa and Leber congenital amaurosis. Previously, we showed that Crb1 knockout mice developed a slow-progressing retinal phenotype at foci in the inferior retina, although specific ablation of Crb2 in immature photoreceptors leads to an early-onset phenotype throughout the retina. Here, we conditionally disrupted one or both alleles of Crb2 in immature photoreceptors, on a genetic background lacking Crb1, and studied the retinal dystrophies thereof. Our data showed that disruption of one allele of Crb2 in immature photoreceptors caused a substantial aggravation of the Crb1 phenotype in the entire inferior retina. The photoreceptor layer showed early-onset progressive thinning limited to the inferior retina, although the superior retina maintained intact. Surprisingly, disruption of both alleles of Crb2 in immature photoreceptors further aggravated the phenotype. Throughout the retina, photoreceptor synapses were disrupted and photoreceptor nuclei intermingled with nuclei of the inner nuclear layer. In the superior retina, the ganglion cell layer appeared thicker because of ectopic nuclei of photoreceptors. In conclusion, the data suggest that CRB2 is required to maintain retinal progenitor and photoreceptor cell adhesion and prevent photoreceptor ingression into the immature inner retina. We hypothesize, from these animal models, that decreased levels of CRB2 in immature photoreceptors adjust retinitis pigmentosa because of the loss of CRB1 into Leber congenital amaurosis phenotype.


Assuntos
Amaurose Congênita de Leber/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Retina/fisiopatologia , Junções Aderentes/genética , Alelos , Animais , Adesão Celular/genética , Modelos Animais de Doenças , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Humanos , Amaurose Congênita de Leber/fisiopatologia , Camundongos , Camundongos Knockout , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Retina/crescimento & desenvolvimento , Sinapses/genética , Sinapses/patologia
8.
Int J Mol Sci ; 21(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545533

RESUMO

Inherited retinal dystrophies and optic neuropathies cause chronic disabling loss of visual function. The development of recombinant adeno-associated viral vectors (rAAV) gene therapies in all disease fields have been promising, but the translation to the clinic has been slow. The safety and efficacy profiles of rAAV are linked to the dose of applied vectors. DNA changes in the rAAV gene cassette affect potency, the expression pattern (cell-specificity), and the production yield. Here, we present a library of rAAV vectors and elements that provide a workflow to design novel vectors. We first performed a meta-analysis on recombinant rAAV elements in clinical trials (2007-2020) for ocular gene therapies. We analyzed 33 unique rAAV gene cassettes used in 57 ocular clinical trials. The rAAV gene therapy vectors used six unique capsid variants, 16 different promoters, and six unique polyadenylation sequences. Further, we compiled a list of promoters, enhancers, and other sequences used in current rAAV gene cassettes in preclinical studies. Then, we give an update on pro-viral plasmid backbones used to produce the gene therapy vectors, inverted terminal repeats, production yield, and rAAV safety considerations. Finally, we assess rAAV transgene and bioactivity assays applied to cells or organoids in vitro, explants ex vivo, and clinical studies.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Doenças do Nervo Óptico/terapia , Distrofias Retinianas/terapia , Proteínas do Capsídeo/genética , Ensaios Clínicos como Assunto , Vetores Genéticos/genética , Doenças do Nervo Óptico/genética , Poliadenilação , Regiões Promotoras Genéticas , Distrofias Retinianas/genética , Resultado do Tratamento
9.
Int J Mol Sci ; 21(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012938

RESUMO

This study describes the clinical, genetic, and histopathological features in patients with RPGR-associated retinal dystrophies. Nine male patients from eight unrelated families underwent a comprehensive ophthalmic examination. Additionally, the histopathology of the right eye from a patient with an end-stage cone-rod-dystrophy (CRD)/sector retinitis pigmentosa (RP) phenotype was examined. All RPGR mutations causing a CRD phenotype were situated in exon ORF15. The mean best-corrected visual acuity (BCVA, decimals) was 0.58 (standard deviation (SD)): 0.34; range: 0.05-1.13); and the mean spherical refractive error was -4.1 D (SD: 2.11; range: -1.38 to -8.19). Hyperautofluorescent rings were observed in six patients. Full-field electroretinography responses were absent in all patients. The visual field defects ranged from peripheral constriction to central islands. The mean macular sensitivity on microperimetry was 11.6 dB (SD: 7.8; range: 1.6-24.4) and correlated significantly with BCVA (r = 0.907; p = 0.001). A histological examination of the donor eye showed disruption of retinal topology and stratification, with a more severe loss found in the peripheral regions. Reactive gliosis was seen in the inner layers of all regions. Our study demonstrates the highly variable phenotype found in RPGR-associated retinal dystrophies. Therapies should be applied at the earliest signs of photoreceptor degeneration, prior to the remodeling of the inner retina.


Assuntos
Distrofias de Cones e Bastonetes/diagnóstico , Proteínas do Olho/genética , Mutação , Retinose Pigmentar/diagnóstico , Adolescente , Adulto , Idade de Início , Distrofias de Cones e Bastonetes/genética , Eletrorretinografia , Éxons , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Retinose Pigmentar/genética , Acuidade Visual , Testes de Campo Visual , Adulto Jovem
10.
Retina ; 39(6): 1186-1199, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29528978

RESUMO

PURPOSE: To describe the phenotype and clinical course of patients with RPGR-associated retinal dystrophies, and to identify genotype-phenotype correlations. METHODS: A multicenter medical records review of 74 male patients with RPGR-associated retinal dystrophies. RESULTS: Patients had retinitis pigmentosa (RP; n = 52; 70%), cone dystrophy (COD; n = 5; 7%), or cone-rod dystrophy (CORD; n = 17; 23%). The median follow-up time was 11.6 years (range 0-57.1). The median age at symptom onset was 5.0 years (range 0-14 years) for patients with RP and 23.0 years (range 0-60 years) for patients with COD/CORD. The probability of being blind (best-corrected visual acuity <0.05) at the age of 40 was 20% and 55% in patients with RP and COD/CORD, respectively. RPGR-ORF15 mutations were associated with high myopia (P = 0.01), which led to a faster best-corrected visual acuity decline in patients with RP (P < 0.001) and COD/CORD (P = 0.03). Patients with RP with RPGR-ORF15 mutations had a faster visual field decline (P = 0.01) and thinner central retina (P = 0.03) than patients with mutations in exon 1 to 14. CONCLUSION: Based on best-corrected visual acuity survival probabilities, the intervention window for gene therapy for RPGR-associated retinal dystrophies is relatively broad in patients with RP. RPGR-ORF15 mutations were associated with COD/CORD and with a more severe phenotype in RP. High myopia is a risk factor for faster best-corrected visual acuity decline.


Assuntos
DNA/genética , Proteínas do Olho/genética , Previsões , Mutação , Distrofias Retinianas/genética , Acuidade Visual , Campos Visuais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Análise Mutacional de DNA , Progressão da Doença , Eletrorretinografia , Proteínas do Olho/metabolismo , Seguimentos , Estudos de Associação Genética , Fatores de Troca do Nucleotídeo Guanina , Humanos , Masculino , Pessoa de Meia-Idade , Distrofias Retinianas/diagnóstico , Tomografia de Coerência Óptica , Adulto Jovem
11.
Adv Exp Med Biol ; 1185: 159-163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884605

RESUMO

Inherited retinal diseases encompass a large group of clinically and genetically heterogeneous diseases estimated to affect two million people worldwide. Among these people, approximately 80,000 are or will become blind in their first decades of life due to mutations in both alleles of the Crumbs homologue-1 (CRB1) gene. Microglia are the resident immune surveyor cells in the retina, and their roles have been heavily studied in several retinal diseases, including retinitis pigmentosa (RP), age-related macular degeneration, and diabetic retinopathy. However, very little is known about the role of microglia in CRB1-associated retinopathies. Thus, we here summarize the main findings described in the literature concerning inflammation and the role of microglia in CRB1-patients and CRB1-rodent models.


Assuntos
Proteínas do Olho/genética , Proteínas de Membrana/genética , Microglia/patologia , Proteínas do Tecido Nervoso/genética , Doenças Retinianas/patologia , Animais , Humanos , Mutação , Retinose Pigmentar/patologia
12.
Int J Mol Sci ; 20(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438467

RESUMO

Variations in the Crumbs homolog-1 (CRB1) gene are associated with a wide variety of autosomal recessive retinal dystrophies, including early onset retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA). CRB1 belongs to the Crumbs family, which in mammals includes CRB2 and CRB3. Here, we studied the specific roles of CRB2 in rod photoreceptor cells and whether ablation of CRB2 in rods exacerbates the Crb1-disease. Therefore, we assessed the morphological, retinal, and visual functional consequences of specific ablation of CRB2 from rods with or without concomitant loss of CRB1. Our data demonstrated that loss of CRB2 in mature rods resulted in RP. The retina showed gliosis and disruption of the subapical region and adherens junctions at the outer limiting membrane. Rods were lost at the peripheral and central superior retina, while gross retinal lamination was preserved. Rod function as measured by electroretinography was impaired in adult mice. Additional loss of CRB1 exacerbated the retinal phenotype leading to an early reduction of the dark-adapted rod photoreceptor a-wave and reduced contrast sensitivity from 3-months-of-age, as measured by optokinetic tracking reflex (OKT) behavior testing. The data suggest that CRB2 present in rods is required to prevent photoreceptor degeneration and vision loss.


Assuntos
Sensibilidades de Contraste/fisiologia , Amaurose Congênita de Leber/metabolismo , Proteínas de Membrana/metabolismo , Retina/metabolismo , Retina/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Sensibilidades de Contraste/genética , Modelos Animais de Doenças , Eletrorretinografia , Imuno-Histoquímica , Amaurose Congênita de Leber/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia
13.
PLoS Genet ; 11(10): e1005551, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26496195

RESUMO

Crumbs family proteins are apical transmembrane proteins with ancient roles in cell polarity. Mouse Crumbs2 mutants arrest at midgestation with abnormal neural plate morphology and a deficit of mesoderm caused by defects in gastrulation. We identified an ENU-induced mutation, wsnp, that phenocopies the Crumbs2 null phenotype. We show that wsnp is a null allele of Protein O-glucosyltransferase 1 (Poglut1), which encodes an enzyme previously shown to add O-glucose to EGF repeats in the extracellular domain of Drosophila and mammalian Notch, but the role of POGLUT1 in mammalian gastrulation has not been investigated. As predicted, we find that POGLUT1 is essential for Notch signaling in the early mouse embryo. However, the loss of mouse POGLUT1 causes an earlier and more dramatic phenotype than does the loss of activity of the Notch pathway, indicating that POGLUT1 has additional biologically relevant substrates. Using mass spectrometry, we show that POGLUT1 modifies EGF repeats in the extracellular domain of full-length mouse CRUMBS2. CRUMBS2 that lacks the O-glucose modification fails to be enriched on the apical plasma membrane and instead accumulates in the endoplasmic reticulum. The data demonstrate that CRUMBS2 is the target of POGLUT1 for the gastrulation epithelial-to-mesenchymal transitions (EMT) and that all activity of CRUMBS2 depends on modification by POGLUT1. Mutations in human POGLUT1 cause Dowling-Degos Disease, POGLUT1 is overexpressed in a variety of tumor cells, and mutations in the EGF repeats of human CRUMBS proteins are associated with human congenital nephrosis, retinitis pigmentosa and retinal degeneration, suggesting that O-glucosylation of CRUMBS proteins has broad roles in human health.


Assuntos
Proteínas do Olho/genética , Glucosiltransferases/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptor Notch1/metabolismo , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário , Proteínas do Olho/metabolismo , Gastrulação/genética , Glucosiltransferases/metabolismo , Glicosilação , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Processamento de Proteína Pós-Traducional/genética , Receptor Notch1/genética , Transdução de Sinais
14.
Hum Mol Genet ; 24(11): 3104-18, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25701872

RESUMO

Mutations in the Crumbs-homologue-1 (CRB1) gene lead to severe recessive inherited retinal dystrophies. Gene transfer therapy is the most promising cure for retinal dystrophies and has primarily been applied for recessive null conditions via a viral gene expression vector transferring a cDNA encoding an enzyme or channel protein, and targeting expression to one cell type. Therapy for the human CRB1 disease will be more complex, as CRB1 is a structural and signaling transmembrane protein present in three cell classes: Müller glia, cone and rod photoreceptors. In this study, we applied CRB1 and CRB2 gene therapy vectors in Crb1-retinitis pigmentosa mouse models at mid-stage disease. We tested if CRB expression restricted to Müller glial cells or photoreceptors or co-expression in both is required to recover retinal function. We show that targeting both Müller glial cells and photoreceptors with CRB2 ameliorated retinal function and structure in Crb1 mouse models. Surprisingly, targeting a single cell type or all cell types with CRB1 reduced retinal function. We show here the first pre-clinical studies for CRB1-related eye disorders using CRB2 vectors and initial elucidation of the cellular mechanisms underlying CRB1 function.


Assuntos
Células Ependimogliais/fisiologia , Proteínas do Tecido Nervoso/genética , Retinose Pigmentar/genética , Animais , Proteínas de Transporte/genética , Modelos Animais de Doenças , Terapia Genética , Células HEK293 , Humanos , Injeções Intravítreas , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Retina/patologia , Retina/fisiopatologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/terapia
15.
Ophthalmology ; 124(6): 884-895, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28341475

RESUMO

PURPOSE: To describe the phenotype, long-term clinical course, clinical variability, and genotype of patients with CRB1-associated retinal dystrophies. DESIGN: Retrospective cohort study. PARTICIPANTS: Fifty-five patients with CRB1-associated retinal dystrophies from 16 families. METHODS: A medical record review of 55 patients for age at onset, medical history, initial symptoms, best-corrected visual acuity, ophthalmoscopy, fundus photography, full-field electroretinography (ffERG), Goldmann visual fields (VFs), and spectral-domain optical coherence tomography. MAIN OUTCOME MEASURES: Age at onset, visual acuity survival time, visual acuity decline rate, and electroretinography and imaging findings. RESULTS: A retinitis pigmentosa (RP) phenotype was present in 50 patients, 34 of whom were from a Dutch genetic isolate (GI), and 5 patients had a Leber congenital amaurosis phenotype. The mean follow-up time was 15.4 years (range, 0-55.5 years). For the RP patients, the median age at symptom onset was 4.0 years. In the RP group, median ages for reaching low vision, severe visual impairment, and blindness were 18, 32, and 44 years, respectively, with a visual acuity decline rate of 0.03 logarithm of the minimum angle of resolution per year. The presence of a truncating mutation did not alter the annual decline rate significantly (P = 0.75). Asymmetry in visual acuity was found in 31% of patients. The annual VF decline rate was 5% in patients from the genetic isolate, which was significantly faster than in non-GI patients (P < 0.05). Full-field electroretinography responses were extinguished in 50% of patients, were pathologically attenuated without a documented rod or cone predominance in 30% of patients, and showed a rod-cone dysfunction pattern in 20% of RP patients. Cystoid fluid collections in the macula were found in 50% of RP patients. CONCLUSIONS: Mutations in the CRB1 gene are associated with a spectrum of progressive retinal degeneration. Visual acuity survival analyses indicate that the optimal intervention window for subretinal gene therapy is within the first 2 to 3 decades of life.


Assuntos
Proteínas do Olho/genética , Estudos de Associação Genética , Amaurose Congênita de Leber/genética , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Retinose Pigmentar/genética , Adolescente , Adulto , Idade de Início , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Eletrorretinografia , Feminino , Seguimentos , Genótipo , Humanos , Amaurose Congênita de Leber/diagnóstico , Amaurose Congênita de Leber/fisiopatologia , Masculino , Pessoa de Meia-Idade , Oftalmoscopia , Fenótipo , Retina/fisiopatologia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/fisiopatologia , Estudos Retrospectivos , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia , Campos Visuais/fisiologia
16.
J Neurosci ; 35(15): 6093-106, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878282

RESUMO

We have identified and characterized a spontaneous Brown Norway from Janvier rat strain (BN-J) presenting a progressive retinal degeneration associated with early retinal telangiectasia, neuronal alterations, and loss of retinal Müller glial cells resembling human macular telangiectasia type 2 (MacTel 2), which is a retinal disease of unknown cause. Genetic analyses showed that the BN-J phenotype results from an autosomal recessive indel novel mutation in the Crb1 gene, causing dislocalization of the protein from the retinal Müller glia (RMG)/photoreceptor cell junction. The transcriptomic analyses of primary RMG cultures allowed identification of the dysregulated pathways in BN-J rats compared with wild-type BN rats. Among those pathways, TGF-ß and Kit Receptor Signaling, MAPK Cascade, Growth Factors and Inflammatory Pathways, G-Protein Signaling Pathways, Regulation of Actin Cytoskeleton, and Cardiovascular Signaling were found. Potential molecular targets linking RMG/photoreceptor interaction with the development of retinal telangiectasia are identified. This model can help us to better understand the physiopathologic mechanisms of MacTel 2 and other retinal diseases associated with telangiectasia.


Assuntos
Células Ependimogliais/patologia , Proteínas do Olho/genética , Mutação/genética , Degeneração Retiniana , Telangiectasia/complicações , Telangiectasia/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Eletrorretinografia , Células Ependimogliais/metabolismo , Células Ependimogliais/ultraestrutura , Proteínas do Olho/metabolismo , Angiofluoresceinografia , Proteína Glial Fibrilar Ácida/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Ratos Mutantes , Degeneração Retiniana/etiologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Vasos Retinianos/patologia , Vasos Retinianos/ultraestrutura , Transdução de Sinais/fisiologia , Vias Visuais/patologia , Vias Visuais/ultraestrutura
17.
Hum Mol Genet ; 23(14): 3759-71, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24565864

RESUMO

Mutations in the CRB1 gene lead to retinal dystrophies ranging from Leber congenital amaurosis (LCA) to early-onset retinitis pigmentosa (RP), due to developmental defects or loss of adhesion between photoreceptors and Müller glia cells, respectively. Whereas over 150 mutations have been found, no clear genotype-phenotype correlation has been established. Mouse Crb1 knockout retinas show a mild phenotype limited to the inferior quadrant, whereas Crb2 knockout retinas display a severe degeneration throughout the retina mimicking the phenotype observed in RP patients associated with CRB1 mutations. Crb1Crb2 double mutant retinas have severe developmental defects similar to the phenotype observed in LCA patients associated with CRB1 mutations. Therefore, CRB2 is a candidate modifying gene of human CRB1-related retinal dystrophy. In this study, we studied the cellular localization of CRB1 and CRB2 in human retina and tested the influence of the Crb2 gene allele on Crb1-retinal dystrophies in mice. We found that in contrast to mice, in the human retina CRB1 protein was expressed at the subapical region in photoreceptors and Müller glia cells, and CRB2 only in Müller glia cells. Genetic ablation of one allele of Crb2 in heterozygote Crb1(+/-) retinas induced a mild retinal phenotype, but in homozygote Crb1 knockout mice lead to an early and severe phenotype limited to the entire inferior retina. Our data provide mechanistic insight for CRB1-related LCA and RP.


Assuntos
Proteínas de Transporte/metabolismo , Células Ependimogliais/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Distrofias Retinianas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas de Transporte/genética , Modelos Animais de Doenças , Proteínas do Olho/genética , Técnicas de Inativação de Genes , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Células Fotorreceptoras/metabolismo
18.
Hum Mol Genet ; 23(13): 3384-401, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24493795

RESUMO

In humans, the Crumbs homolog-1 (CRB1) gene is mutated in autosomal recessive Leber congenital amaurosis and early-onset retinitis pigmentosa. In mammals, the Crumbs family is composed of: CRB1, CRB2, CRB3A and CRB3B. Recently, we showed that removal of mouse Crb2 from retinal progenitor cells, and consequent removal from Müller glial and photoreceptor cells, results in severe and progressive retinal degeneration with concomitant loss of retinal function that mimics retinitis pigmentosa due to mutations in the CRB1 gene. Here, we studied the effects of cell-type-specific loss of CRB2 from the developing mouse retina using targeted conditional deletion of Crb2 in photoreceptors or Müller cells. We analyzed the consequences of targeted loss of CRB2 in the adult mouse retina using adeno-associated viral vectors encoding Cre recombinase and short hairpin RNA against Crb2. In vivo retinal imaging by means of optical coherence tomography on retinas lacking CRB2 in photoreceptors showed progressive thinning of the photoreceptor layer and cellular mislocalization. Electroretinogram recordings under scotopic conditions showed severe attenuation of the a-wave, confirming the degeneration of photoreceptors. Retinas lacking CRB2 in developing photoreceptors showed early onset of abnormal lamination, whereas retinas lacking CRB2 in developing Müller cells showed late onset retinal disorganization. Our data suggest that in the developing retina, CRB2 has redundant functions in Müller glial cells, while CRB2 has essential functions in photoreceptors. Our data suggest that short-term loss of CRB2 in adult mouse photoreceptors, but not in Müller glial cells, causes sporadic loss of adhesion between photoreceptors and Müller cells.


Assuntos
Proteínas de Membrana/metabolismo , Células Fotorreceptoras/metabolismo , Retinose Pigmentar/etiologia , Retinose Pigmentar/metabolismo , Animais , Células Ependimogliais/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retinose Pigmentar/genética
19.
PLoS Genet ; 9(12): e1003976, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339791

RESUMO

Development in the central nervous system is highly dependent on the regulation of the switch from progenitor cell proliferation to differentiation, but the molecular and cellular events controlling this process remain poorly understood. Here, we report that ablation of Crb1 and Crb2 genes results in severe impairment of retinal function, abnormal lamination and thickening of the retina mimicking human Leber congenital amaurosis due to loss of CRB1 function. We show that the levels of CRB1 and CRB2 proteins are crucial for mouse retinal development, as they restrain the proliferation of retinal progenitor cells. The lack of these apical proteins results in altered cell cycle progression and increased number of mitotic cells leading to an increased number of late-born cell types such as rod photoreceptors, bipolar and Müller glia cells in postmitotic retinas. Loss of CRB1 and CRB2 in the retina results in dysregulation of target genes for the Notch1 and YAP/Hippo signaling pathways and increased levels of P120-catenin. Loss of CRB1 and CRB2 result in altered progenitor cell cycle distribution with a decrease in number of late progenitors in G1 and an increase in S and G2/M phase. These findings suggest that CRB1 and CRB2 suppress late progenitor pool expansion by regulating multiple proliferative signaling pathways.


Assuntos
Sistema Nervoso Central/metabolismo , Amaurose Congênita de Leber/genética , Proteínas de Membrana/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Retina/crescimento & desenvolvimento , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/patologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Mitose/genética , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Retina/citologia , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células-Tronco/metabolismo
20.
Hum Mol Genet ; 22(1): 35-50, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23001562

RESUMO

In humans, the Crumbs homolog-1 (CRB1) gene is mutated in progressive types of autosomal recessive retinitis pigmentosa and Leber congenital amaurosis. However, there is no clear genotype-phenotype correlation for CRB1 mutations, which suggests that other components of the CRB complex may influence the severity of retinal disease. Therefore, to understand the physiological role of the Crumbs complex proteins, we generated and analysed conditional knockout mice lacking CRB2 in the developing retina. Progressive disorganization was detected during late retinal development. Progressive thinning of the photoreceptor layer and sites of cellular mislocalization was detected throughout the CRB2-deficient retina by confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography. Under scotopic conditions using electroretinography, the attenuation of the a-wave was relatively stronger than that of the b-wave, suggesting progressive degeneration of photoreceptors in adult animals. Histological analysis of newborn mice showed abnormal lamination of immature rod photoreceptors and disruption of adherens junctions between photoreceptors, Müller glia and progenitor cells. The number of late-born progenitor cells, rod photoreceptors and Müller glia cells was increased, concomitant with programmed cell death of rod photoreceptors. The data suggest an essential role for CRB2 in proper lamination of the photoreceptor layer and suppression of proliferation of late-born retinal progenitor cells.


Assuntos
Proteínas do Olho/genética , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/genética , Retina/metabolismo , Retinose Pigmentar/genética , Animais , Apoptose , Sequência de Bases , Primers do DNA , Eletrorretinografia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Fotorreceptoras de Vertebrados/patologia , Reação em Cadeia da Polimerase , Retina/crescimento & desenvolvimento , Retinose Pigmentar/patologia , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA