RESUMO
OBJECTIVE: Poly(ADP-ribose) polymerase (PARP) inhibitors have yielded encouraging responses in high-grade serous ovarian carcinomas (HGSOCs), but the optimal treatment setting remains unknown. We assessed the effect of niraparib on HGSOC patient-derived xenograft (PDX) models as well as the relationship between certain markers of homologous recombination (HR) status, including BRCA1/2 mutations and formation of RAD51 foci after DNA damage, and response of these PDXs to niraparib in vivo. METHODS: Massively parallel sequencing was performed on HGSOCs to identify mutations contributing to HR deficiency. HR pathway integrity was assessed using fluorescence microscopy-based RAD51 focus formation assays. Effects of niraparib (MK-4827) on treatment-naïve PDX tumor growth as monotherapy, in combination with carboplatin/paclitaxel, and as maintenance therapy were assessed by transabdominal ultrasound. Niraparib responses were correlated with changes in levels of poly(ADP-ribose), PARP1, and repair proteins by western blotting. RESULTS: Five PDX models were evaluated in vivo. Tumor regressions were induced by single-agent niraparib in one of two PDX models with deleterious BRCA2 mutations and in a PDX with RAD51C promoter methylation. Diminished formation of RAD51 foci failed to predict response, but Artemis loss was associated with resistance. Niraparib generally failed to enhance responses to carboplatin/paclitaxel chemotherapy, but maintenance niraparib therapy delayed progression in a BRCA2-deficient PDX. CONCLUSIONS: Mutations in HR genes are neither necessary nor sufficient to predict response to niraparib. Assessment of repair status through multiple complementary assays is needed to guide PARP inhibitor therapy, design future clinical trials and identify ovarian cancer patients most likely to benefit from PARP inhibition.
Assuntos
Recombinação Homóloga , Indazóis/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Piperidinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Feminino , Genes BRCA2 , Humanos , Neoplasias Ovarianas/genética , Regiões Promotoras GenéticasRESUMO
In cystic fibrosis (CF), excessive furin activity plays a critical role in the activation of the epithelial sodium channel (ENaC), dysregulation of which contributes to airway dehydration, ineffective mucociliary clearance (MCC), and mucus obstruction. Here, we report a highly selective, cell-permeable furin inhibitor, BOS-318, that derives selectivity by eliciting the formation of a new, unexpected binding pocket independent of the active site catalytic triad. Using human ex vivo models, BOS-318 showed significant suppression of ENaC, which led to enhanced airway hydration and an â¼30-fold increase in MCC rate. Furin inhibition also protected ENaC from subsequent activation by neutrophil elastase, a soluble protease dominant in CF airways. Additional therapeutic benefits include protection against epithelial cell death induced by Pseudomonas aeruginosa exotoxin A. Our findings demonstrate the utility of selective furin inhibition as a mutation-agnostic approach that can correct features of CF airway pathophysiology in a manner expected to deliver therapeutic value.
Assuntos
Fibrose Cística , Furina , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Furina/antagonistas & inibidores , Humanos , Depuração MucociliarRESUMO
We have previously shown that 3-phenylpyrazolo[1,5-a]pyrimidines exemplified by 8 were potent antagonists of the human corticotropin-releasing factor-1 receptor. A series of 3-pyridylpyrazolo[1,5-a]pyrimidines 15, 25-30, 34, and 35 containing a weakly basic pyridine ring at the 3-position of the bicyclic nucleus was designed to reduce lipophilicity from the initial leads such as 7. Here, we showed that these 3-pyridyl compounds exhibited potent antagonists at the human CRF(1) receptor. Moreover, the hydrophilic and weakly basic pyridine moiety increased the water solubility of some analogues. Compound 26 h exhibited good binding affinity at the human CRF(1) receptor with a K(i) value of 3.5 nM. As a functional antagonist, it dose-dependently inhibited CRF-stimulated cAMP production in cells expressing the CRF(1) receptor (IC(50) = 50 nM), and CRF-stimulated ACTH release from cultured rat pituitary cells (IC(50) = 20 nM). 26 h had a log P value of 4.9 and water solubility of greater than 10 mg/mL. Pharmacokinetic studies in rats showed that 26 h was orally bioavailable and able to penetrate into the brain. 26 h has been demonstrated in vivo efficacy in animal behavioral models that measure anxiolytic activity. These results suggest that analogues from this series were potent CRF(1) receptor antagonists with proper physicochemical properties and good pharmacokinetic profiles. 26 h was developed into a clinical compound and exhibited efficacy in patients with major depression.
Assuntos
Desenho de Fármacos , Pirimidinas/química , Pirimidinas/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Hormônio Adrenocorticotrópico/metabolismo , Animais , Hormônio Liberador da Corticotropina/farmacologia , AMP Cíclico/metabolismo , Concentração Inibidora 50 , Masculino , Camundongos , Estrutura Molecular , Pirimidinas/administração & dosagem , Pirimidinas/síntese química , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Relação Estrutura-AtividadeRESUMO
The pharmaceutical and healthcare industries are being revolutionized by the use of genomics, proteomics, metabolomics, bioinformatics and molecular imaging. Patient friendly diagnosis, treatment and disease management options that utilize the combination of these technologies are currently in development. New innovations in pharmaceutical advancement are taking place at the intersection of these technologies, and will be coupled with societal changes as we move to a fully networked and individual-centric consumer base. Numerous examples of the combinations of molecular characterization technologies aimed at better preclinical and clinical disease understanding, diagnosis and treatment are highlighted that are ideally situated to generate the intersectional innovation that drives healthcare advancement. The true value in patient-centric medicine will only be realized as the improved molecular characterization of disease provided by these technologies is integrated across platforms that operate directly in the patient and care provider space to provide a comprehensive view of health. Molecular profiling and imaging technologies must become fully integrated and amenable for patient and physician use in a networked environment that can provide a personal health avatar approach to medicine.
RESUMO
IMPORTANCE OF THE FIELD: Metabolomics is increasingly becoming an important field in the pharmaceutical industry to support the discovery and development of therapeutic agents. It allows the comprehensive and simultaneous profiling of hundreds of discrete biologically important molecules, including amino acids, sugars, lipids and exogenous substances from biological fluids and tissues. Metabolomics is the 'omics' field that most represents the interplay of internal biological regulation and external environmental influences on disease, thereby being of particular importance to disease mitigation and management. AREAS COVERED IN THIS REVIEW: Technological advances in the experimental work flow, analytical detection strategies and bioinformatics tools have enabled metabolomics studies to become increasingly comprehensive, robust and informative for the understanding of disease, drug action and the development of biomarkers. This review will focus on the practical aspects of metabolomics studies as they have been applied to the study of mammalian biological systems, specifically targeted to the steps of experimental design with regard to sample preparation, sample analysis and data analysis of both polar and non-polar metabolites. WHAT THE READER WILL GAIN: The reader will gain an overview of the field of metabolomics as it applies to drug development and the practical issues involved with experimental design. We will discuss the various methods of sample preparation and analysis as they apply to different classes of metabolites and highlight recent advances in the field that illustrate these methods. TAKE HOME MESSAGE: The field of metabolomics is a rapidly expanding discipline that is being applied to various aspects of drug development. The large diversity of metabolites found in nature dictates that different methods be developed for the investigation of different classes of metabolites. As the field of metabolomics continues to mature, it is likely that it will play an increasingly important role in the characterization of disease and the future development of biomarkers to assess drug efficacy and safety.
RESUMO
The RAS/RAF/MEK/ERK signaling pathway has been a major clinical focus in oncology research in recent years. A clearer association of B-RAF mutations to cancers such as melanoma, papillary thyroid cancer and others has brought an increasing interest in chemotherapeutics that target this cellular signaling pathway. In this review, the authors summarize the current understanding of science and therapeutic use of the MEK inhibitors targeting the RAS/RAF/ MEK/ERK pathway. Clinical progresses of PD0325901 and AZD6244 are highlighted in addition to developments of new MEK inhibitors. Recently disclosed MEK inhibitors in two sub-divided classes, ATP noncompetitive and ATP competitive inhibitors are discussed.
Assuntos
Antineoplásicos/química , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Trifosfato de Adenosina/antagonistas & inibidores , Antineoplásicos/farmacologia , Desenho de Fármacos , Humanos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Ribosomes and nonribosomal peptide synthetases (NRPSs) carry out instructed peptide synthesis through a series of directed intermodular aminoacyl transfer reactions. We recently reported the design of coiled-coil assemblies that could functionally mimic the elementary aminoacyl loading and intermodular aminoacyl transfer steps of NRPSs. These peptides were designed initially to accelerate aminoacyl transfer mainly through catalysis by approximation by closely juxtaposing four active site moieties, two each from adjacent noncovalently associated helical modules. In our designs peptide self-assembly positions a cysteine residue that is used to covalently capture substrates from solution via transthiolesterification (substrate loading step to generate the aminoacyl donor site) adjacent to an aminoacyl acceptor site provided by a covalently tethered amino acid or modeled by the epsilon-amine of an active site lysine. However, through systematic functional analyses of 48 rationally designed peptide sequences, we have now determined that the substrate loading and intermodular aminoacyl transfer steps can be significantly influenced (up to approximately 103-fold) by engineering changes in the active site microenvironment through amino acid substitutions and variations in the inter-residue distances and geometry. Mechanistic studies based on 15N NMR and kinetic analysis further indicate that certain active site constellations furnish an unexpectedly large pK(a) depression (1.5 pH units) of the aminoacyl-acceptor moiety, helping to explain the observed high rates of aminoacyl transfer in those constructs. Taken together, our studies demonstrate the feasibility of engineering efficient de novo peptide sequences possessing active sites and functions reminiscent of those in natural enzymes.
Assuntos
Materiais Biomiméticos , Peptídeo Sintases/química , Peptídeos/síntese química , Engenharia de Proteínas , Sequência de Aminoácidos , Aminoácidos , Sítios de Ligação , Peptídeos/química , Estrutura Secundária de ProteínaRESUMO
Diverse virus families have evolved to exploit the acidification of endosomal compartments to gain entry into cells. We describe a supramolecular approach for selectively targeting and inhibiting viral infections through this central biochemical pathway. Using adenovirus as a model non-enveloped virus, we have determined that an eight-residue cyclic D,L-alpha-peptide, selected from a directed combinatorial library, can specifically prevent the development of low pH in endocytic vesicles, arrest the escape of virions from the endosome, and abrogate adenovirus infection without an apparent adverse effect on cell viability. The likely generality of this approach against other pH-dependent viral infections is supported by the inhibition of type-A influenza virus escape from endosomes in the presence of the same peptide. Our studies suggest that self-assembling cyclic D,L-alpha-peptides hold considerable potential as a new rational supramolecular approach toward the design and discovery of broad-spectrum antiviral agents.
Assuntos
Antivirais/farmacologia , Peptídeos Cíclicos/farmacologia , Viroses/tratamento farmacológico , Sequência de Aminoácidos , Animais , Antivirais/química , Antivirais/uso terapêutico , Linhagem Celular , Cães , Corantes Fluorescentes , Humanos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/uso terapêutico , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Cyclic peptides have come under scrutiny as potential antimicrobial therapeutic agents. Combinatorial split-and-pool synthesis of cyclic peptides can afford single compound per well libraries for antimicrobial screening, new lead identification, and construction of quantitative structure-activity relationships (QSAR). Here, we report a new sequencing protocol for rapid identification of the members of a cyclic peptide library based on automated computer analysis of mass spectra, obviating the need for library encoding/decoding strategies. Furthermore, the software readily integrates with common spreadsheet and database packages to facilitate data visualization and archiving. The utility of the new MS-sequencing approach is demonstrated using sonic spray ionization ion trap MS and MS/MS spectrometry on a single compound per bead cyclic peptide library and validated with individually synthesized pure cyclic D,L-alpha-peptides.
Assuntos
Biblioteca de Peptídeos , Peptídeos Cíclicos/análise , Análise de Sequência de Proteína/instrumentação , Automação , Espectrometria de Massas , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/genética , Análise de Sequência de Proteína/métodos , SoftwareRESUMO
A series of 3-(2-pyridyl)pyrazolo[1,5-a]pyrimidines was designed and synthesized as antagonists for the corticotrophin-releasing factor-1 (CRF(1)) receptor. Several compounds such as 20c (K(i)=10 nM) exhibited good binding affinities at the CRF(1) receptor. In addition, 20c had adequate solubility in water.
Assuntos
Pirazóis/síntese química , Pirimidinas/síntese química , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Desenho de Fármacos , Cinética , Modelos Moleculares , Estrutura Molecular , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-AtividadeRESUMO
In our efforts to identify potent CRF(1) antagonists with proper physicochemical properties, a series of 3-phenylpyrazolo[1,5-a]pyrimidines bearing polar groups, such as amino, hydroxyl, methoxy, sulfoxide, were designed and synthesized. Several positions of the core structure were identified, where a polar group was tolerated with slight reduction in receptor binding. NBI 30545 (18n) was found to have good binding affinity and potent antagonistic activity at the human CRF(1) receptor. Moreover, this compound had proper lipophilicity (log D = 2.78) and good solubility in water (>10mg/mL), and exhibited good plasma and brain exposure when given orally.
Assuntos
Desenho de Fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Hormônio Adrenocorticotrópico/metabolismo , Animais , Ligação Competitiva , Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , AMP Cíclico/metabolismo , Plasma/metabolismo , Pirazóis/síntese química , Pirimidinas/síntese química , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Solubilidade , Relação Estrutura-Atividade , Água/químicaRESUMO
SAR studies of 2-arylimidazolo[1,2-a]pyrimid-5-ones 10a-m, which were derived from initial lead 3a, resulted in the discovery of a series of potent nonpeptide human GnRH receptor antagonists. Compounds with good potency (e.g., 10e, K(i)=7.5 nM) were prepared by introduction of a 2-(2-pyridyl)ethyl at the basic nitrogen and a 3-pentyl ester at the 6-position of the bicyclic core.
Assuntos
Pirimidinonas/síntese química , Pirimidinonas/farmacologia , Receptores LHRH/antagonistas & inibidores , Sítios de Ligação , Humanos , Estrutura Molecular , Pirimidinonas/química , Relação Estrutura-AtividadeRESUMO
SAR studies of lead GnRH receptor antagonists 2a and 2b reported earlier resulted in the discovery of compound 10b which showed much higher potency (K(i)=4.6 nM, compared with 2b, K(i)=230 nM) in which the 7-position of the imidazolo[1,2-a]pyrimidone core was substituted with a methyl group, and the ester at the 6-position was replaced by the 3-methoxyphenyl group.