Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Environ Health Perspect ; 27: 149-59, 1978 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-367766

RESUMO

The use of plants to monitor heavy metal pollution in the terrestrial environment must be based on a cognizance of the complicated, integrated effects of pollutant source and soil-plant variables. To be detectable in plants, pollutant sources must significantly increase the plant available metal concentration in soil. The major factor governing metal availability to plants in soils is the solubility of the metal associated with the solid phase, since in order for root uptake to occur, a soluble species must exist adjacent to the root membrane for some finite period. The rate of release and form of this soluble species will have a strong influence on the rate and extent of uptake and, perhaps, mobility and toxicity in the plant and consuming animals. The factors influencing solubility and form of available metal species in soil vary widely geographically and include the concentration and chemical form of the element entering soil, soil properties (endogenous metal concentration, mineralogy, particle size distribution), and soil processes (e.g., mineral weathering, microbial activity), as these influence the kinetics of sorption reactions, metal concentration in solution and the form of soluble and insoluble chemical species. The plant root represents the first barrier to the selective accumulation of ions present in soil solution. Uptake and kinetic data for nutrient ions and chemically related nonnutrient analogs suggest that metabolic processes associated with root absorption of nutrients regulate both the affinity and rate of absorption of specific nonnutrient ions. Detailed kinetic studies of Ni, Cd, and Tl uptake by intact plants demonstrate multiphasic root absorption processes over a broad concentration range, and the use of transport mechanisms in place for the nutrient ions Cu, Zn, and K. Advantages and limitations of higher plants as indicators of increased levels of metal pollution are discussed in terms of these soil and plant phenomena.


Assuntos
Metais/metabolismo , Plantas/metabolismo , Solo , Absorção , Bioensaio , Fenômenos Químicos , Química , Íons/metabolismo , Cinética , Metais/análise , Metais/farmacologia , Modelos Biológicos , Plantas/efeitos dos fármacos , Solo/análise , Poluentes do Solo/análise
2.
Sci Total Environ ; 28: 159-68, 1983 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-6683870

RESUMO

Metabolic and physiological processes play important roles in regulating the transfer and behavior of trace elements in the soil/plant/animal system. The behaviors of Ni, Cd, Cr, T1, Np, Pu and Tc are used to illustrate important aspects of these processes. Microbial metabolism has both indirect and direct effects on trace element solubility in soils. Once non-nutrient trace elements are solubilized, the ability of plant roots to actively accumulate them is dependent on chemical activity of the element in soil solution, the presence of competing ions and the redox potential and absorption capacity of the root. After absorption in the plant, trace elements are translocated, metabolized and stored; fate and behavior varies with the properties of the element, but is generally analogous to nutrient elements. These processes can dramatically affect the availability of individual elements to animals consuming plants.


Assuntos
Disponibilidade Biológica , Dieta , Absorção Intestinal , Plantas/metabolismo , Microbiologia do Solo , Oligoelementos/metabolismo , Animais , Transporte Biológico , Cádmio/metabolismo , Cobaias , Cinética , Níquel/metabolismo , Codorniz , Ratos , Glycine max , Telúrio/metabolismo
3.
Health Phys ; 46(3): 657-63, 1984 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-6698792

RESUMO

A chronic feeding study using 95mTc incorporated into alfalfa and an acute study where 95mTc was amended to alfalfa showed that about 8.4% of ingested Tc was transferred to eggs. After 10 days of chronic feeding, 80% of the Tc was in yolk, 20% in albumin and less than 1% in shell and associated membranes. At necropsy, technetium concentrations in the three largest oocytes were nearly equal. The biological half-time for Tc was about one to two days in acute studies. Results from the chronic feeding study also indicated that Tc levels in albumin reach a maximum between three and five days while maximum yolk concentration is attained in about six to seven days. Albumin concentrations declined about 20-50% after Day 6.


Assuntos
Coturnix/metabolismo , Ovos/análise , Contaminação Radioativa de Alimentos/análise , Codorniz/metabolismo , Tecnécio/análise , Administração Oral , Ração Animal , Animais , Feminino , Tecnécio/administração & dosagem , Fatores de Tempo
4.
Health Phys ; 57(2): 281-7, 1989 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2759868

RESUMO

The comparative behavior of sulfur (S) and technetium (Tc) in soybean seedlings shows gross subcellular distributions to be similar for these oxyanions. More than 75% of the tissue-deposited Tc remains soluble and extractable. Differences in Tc fixation/incorporation were noted for the nuclear and chloroplast fractions of leaf and root cells. Pulse studies showed that soluble protein and nitrate reductase levels rose in response to Tc accumulation by sink leaves but not source leaves. In vitro assay of chloroplast-based S reduction and incorporation systems showed Tc to be reduced and incorporated into amino nitrogen-containing products. A hypothesis related to the metabolic behavior of Tc in plants is presented.


Assuntos
Glycine max/metabolismo , Poluentes Radioativos do Solo , Poluentes do Solo , Radioisótopos de Enxofre/metabolismo , Tecnécio/metabolismo , Nitrato Redutases/metabolismo , Glycine max/enzimologia
10.
Appl Environ Microbiol ; 43(2): 418-23, 1982 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16345947

RESUMO

As a first phase in an investigation of the role of the soil microflora in Pu complex formation and solubilization in soil, the effects of Pu concentration, form, and specific activity on microbial types, colony-forming units, and CO(2) evolution rate were determined in soils amended with C and N sources to optimize microbial activity. The effects of Pu differed with organism type and incubation time. After 30 days of incubation, aerobic sporeforming and anaerobic bacteria were significantly affected by soil Pu levels as low as 1 mug/g when Pu was added as the hydrolyzable Pu(NO(3))(4) (solubility, <0.1% in soil). Other classes of organisms, except the fungi, were significantly affected at soil Pu levels of 10 mug/g. Fungi were affected only at soil Pu levels of 180 mug/g. Soil CO(2) evolution rate and total accumulated CO(2) were affected by Pu only at the 180 mug/g level. Because of the possible role of resistant organisms in complex formation, the mechanisms of effects of Pu on the soil fungi were further evaluated. The effect of Pu on soil fungal colony-forming units was a function of Pu solubility in soil and Pu specific activity. When Pu was added in a soluble, complexed form [Pu(2)(diethylenetriaminepentaacetate)(3)], effects occurred at Pu levels of 1 mug/g and persisted for at least 95 days. Toxicity was due primarily to radiation effects rather than to chemical effects, suggesting that, at least in the case of the fungi, formation of Pu complexes would result primarily from ligands associated with normal (in contrast to chemically-induced) biochemical pathways.

11.
Plant Physiol ; 62(4): 563-5, 1978 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16660559

RESUMO

The absorption of Ni(2+) by 21-day-old soybean plants (Glycine max cv. Williams) was investigated with respect to its concentration dependence, transport kinetics, and interactions with various nutrient cations. Nickel absorption, measured as a function of concentration (0.02 to 100 mum), demonstrated the presence of multiple absorption isotherms. Each of the three isotherms conforms to Michaelis-Menten kinetics; kinetic constants are reported for uptake by the intact plant and for transfer from root to shoot tissues. The absorption of Ni(2+) by the intact plant and its transfer from root to shoot were inhibited by the presence of Cu(2+), Zn(2+), Fe(2+), and Co(2+). Competition kinetic studies showed Cu(2+) and Zn(2+) to inhibit Ni(2+) absorption competitively, suggesting that Ni(2+), Cu(2+), and Zn(2+) are absorbed using the same carrier site. Calculated K(m) and K(i) constants for Ni(2+) in the presence and absence of Cu(2+) were 6.1 and 9.2 mum, respectively, whereas K(m) and K(i) constants were calculated to be 6.7 and 24.4 mum, respectively, for Ni(2+) in the presence and absence of Zn(2+). The mechanism of inhibition of Ni(2+) in the presence of Fe(2+) and Co(2+) was not resolved by classical kinetic relationships.

12.
Plant Physiol ; 62(4): 566-70, 1978 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16660560

RESUMO

The gross tissue distribution, intracellular fate, and chemical behavior of Ni(2+) in soybean plants (Glycine max cv. Williams) were investigated. Following root absorption, Ni was highly mobile in the plant, with leaves being the major sink in the shoots for Ni during vegetative growth. A senescence >70% of the Ni present in the shoot was remobilized to seeds. Fractionation of root and leaf tissues showed >90% of the Ni to be associated with the soluble fraction of tissues; ultrafiltration of the solubles showed >77% of the Ni to be associated with the 10,000 to 500 molecular weight components of both roots and leaves. Chemical characterization of the soluble components (10,000 to 500 and >500 molecular weight) by thin layer chromatography and electrophoresis resolved a number of Ni-containing organic complexes. Major Ni-containing components formed in the root are transported in the xylem stream, and undergo partial modification on deposition in leaves. Nickel accumulated in seeds is primarily associated with the cotyledons. Chemical fractionation of cotyledon components showed 80% of the Ni to be associated with the soluble whey fraction, while 70% of this fraction was composed of Ni-containing components with molecular weight <10,000.

13.
Plant Physiol ; 68(4): 835-9, 1981 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16662008

RESUMO

The distribution and chemical behavior of Cd(2+) in tissues and its chemical form in xylem water of soybean plants (cv. Williams) were investigated. Following root absorption, Cd is strongly retained by roots, with only 2% of the accumulated Cd being transported to leaves; as much as 8% was transported to seeds during seed filling. In vivo xylem exudates contained two anionic Cd complexes in addition to inorganic forms of Cd. Once accumulated in root and leaf tissues, Cd rapidly equilibrated between the insoluble, soluble, and organelle fractions. Of the solubles, which contain 50% of the Cd, >50% was associated with components of >10,000 molecular weight, and <8% was associated with <500 molecular weight components. Cadmium accumulated in soybean seeds was primarily associated with cotyledons. Fractionation of seeds showed the soy proteinate and soy whey to contain 32 and 50% of the accumulated Cd, respectively.

14.
Plant Physiol ; 73(3): 844-8, 1983 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16663310

RESUMO

The absorption characteristics of Cd(2+) by 10- to 12-day-old soybean plants (Glycine max cv Williams) were investigated with respect to influence of Cd concentration on adsorption to root surfaces, root absorption, transport kinetics and interaction with the nutrient cations Cu(2+), Fe(2+), Mn(2+), and Zn(2+). The fraction of nonexchangeable Cd bound to roots remained relatively constant at 20 to 25% of the absorbed fraction at solution concentration of 0.0025 to 0.5 micromolar, and increased to 45% at solution concentration in excess of 0.5 micromolar. The exchangeable fraction represented 1.4 to 32% of the absorbed fraction, and was concentration dependent. Using dinitrophenol as a metabolic inhibitor, the ;metabolically absorbed' fraction was shown to represent 75 to 80% of the absorbed fraction at concentration less than 0.5 micromolar, and decreased to 55% at 5 micromolar. At comparatively low Cd concentrations, 0.0025 to micromolar 0.3, root absorption exhibited two isotherms with K(2) values of 0.08 and 1.2 micromolar. Root absorption and transfer from root to shoot of Cd(2+) was inhibited by Cu(2+), Fe(2+), Mn(2+), and Zn(2+). Analyses of kinetic interaction of these nutrient cations with Cd(2+) indicated that Cu(2+), Fe(2+), Zn(2+), and possibly Mn(2+) inhibited Cd absorption competitively suggesting an involvement of a common transport site or process.

15.
Plant Physiol ; 73(3): 849-52, 1983 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16663311

RESUMO

The absorption characteristics and mechanisms of pertechnetate (TcO(4) (-)) uptake by hydroponically grown soybean seedlings (Glycine max cv Williams) were determined. Absorption from 10 micromolar solutions was linear for at least 6 hours, with 30% of the absorbed TcO(4) (-) being transferred to the shoot. Evaluation of concentration-dependent absorption rates from solutions containing 0.02 to 10 micromolar TcO(4) (-) shows the presence of multiphasic absorption isotherms with calculated K(s) values of 0.09, 8.9, and 54 micromolar for intact seedlings. The uptake of TcO(4) (-) was inhibited by a 4-fold concentration excess of sulfate, phosphate, selenate, molybdate, and permanganate; no reduction was noted with borate, nitrate, tungstate, perrhenate, iodate, or vanadate. Analyses of the kinetics of interaction between TcO(4) (-) and inhibiting anions show permanganate to be a noncompetitive inhibitor, while sulfate, phosphate, and selenate, and molybdate exhibit characteristics of competitive inhibitors of TcO(4) (-) transport suggesting involvement of a common transport process.

16.
Plant Physiol ; 86(3): 734-9, 1988 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16665978

RESUMO

The xylem exudates of soybean (Glycine max cv Williams), provided with fixed N, were characterized as to their organic constituents and in vivo and in vitro complexation of plutonium, iron, cadmium, and nickel. Ion exchange fractionation of whole exudates into their compound classes (organic acid, neutral, amino acid, and polyphosphate), followed by thinlayer electrophoresis, permitted evaluation of the types of ligands which stabilize each element. The polyvalent elements plutonium(IV) and iron(III) are found primarily as organic acid complexes, while the divalent elements nickel(II) and cadmium(II) are associated primarily with components of the amino acid/peptide fraction. For plutonium and cadmium, it was not possible to fully duplicate complexes formed in vivo by back reaction with whole exudates or individual class fractions, indicating the possible importance of plant induction processes, reaction kinetics, and/or the formation of mixed ligand complexes. The number and distribution of specific iron- and nickel-containing complexes varies with plant age and appears to be related to the relative concentration of organic acids and amino acids/peptides being produced and transported in the xylem as the plant matures.

17.
Appl Environ Microbiol ; 42(5): 830-7, 1981 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16345885

RESUMO

The losses of benzoic acid and a homologous series of both mono- and dibasic aliphatic acids in oil shale retort water were monitored with time (21 days) in liquid culture (4% retort water, vol/vol) inoculated with soil. The organic acids constituted approximately 12% of the dissolved organic carbon in retort water, which served as the sole source of carbon and energy in these studies. The levels of the acids in solution were reduced by 80 to 90% within 9 days of incubation. From mass balance calculations, the decrease in dissolved organic carbon with time of incubation was equal to the formation of CO(2) and bacterial cell carbon. The decrease in the level of the acid components, either from degradation to CO(2) or incorporation into bacteria, would account for approximately 70% of the loss in dissolved organic carbon within the first 9 days of incubation and would account for approximately 50% of the loss over the entire 21-day incubation period.

18.
Appl Environ Microbiol ; 66(6): 2451-60, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10831424

RESUMO

To help provide a fundamental basis for use of microbial dissimilatory reduction processes in separating or immobilizing (99)Tc in waste or groundwaters, the effects of electron donor and the presence of the bicarbonate ion on the rate and extent of pertechnetate ion [Tc(VII)O(4)(-)] enzymatic reduction by the subsurface metal-reducing bacterium Shewanella putrefaciens CN32 were determined, and the forms of aqueous and solid-phase reduction products were evaluated through a combination of high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and thermodynamic calculations. When H(2) served as the electron donor, dissolved Tc(VII) was rapidly reduced to amorphous Tc(IV) hydrous oxide, which was largely associated with the cell in unbuffered 0. 85% NaCl and with extracellular particulates (0.2 to 0.001 microm) in bicarbonate buffer. Cell-associated Tc was present principally in the periplasm and outside the outer membrane. The reduction rate was much lower when lactate was the electron donor, with extracellular Tc(IV) hydrous oxide the dominant solid-phase reduction product, but in bicarbonate systems much less Tc(IV) was associated directly with the cell and solid-phase Tc(IV) carbonate may have been present. In the presence of carbonate, soluble (<0.001 microm) electronegative, Tc(IV) carbonate complexes were also formed that exceeded Tc(VII)O(4)(-) in electrophoretic mobility. Thermodynamic calculations indicate that the dominant reduced Tc species identified in the experiments would be stable over a range of E(h) and pH conditions typical of natural waters. Thus, carbonate complexes may represent an important pathway for Tc transport in anaerobic subsurface environments, where it has generally been assumed that Tc mobility is controlled by low-solubility Tc(IV) hydrous oxide and adsorptive, aqueous Tc(IV) hydrolysis products.


Assuntos
Shewanella putrefaciens/metabolismo , Tecnécio/metabolismo , Carbonatos/metabolismo , Elétrons , Hidrogênio/metabolismo , Lactatos/metabolismo , Microscopia Eletrônica , Oxirredução , Prótons , Solubilidade , Soluções/química , Análise Espectral , Termodinâmica , Poluentes Radioativos da Água/metabolismo , Raios X
19.
FEMS Microbiol Ecol ; 49(1): 151-62, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19712393

RESUMO

Pertechnetate ion [Tc(VII)O(4) (-)] reduction rate was determined in core samples from a shallow sandy aquifer located on the US Atlantic Coastal Plain. The aquifer is generally low in dissolved O(2) (<1 mg L(-1)) and composed of weakly indurated late Pleistocene sediments differing markedly in physicochemical properties. Thermodynamic calculations, X-ray absorption spectroscopy and statistical analyses were used to establish the dominant reduction mechanisms, constraints on Tc solubility, and the oxidation state, and speciation of sediment reduction products. The extent of Tc(VII) reduction differed markedly between sediments (ranging from 0% to 100% after 10 days of equilibration), with low solubility Tc(IV) hydrous oxide the major solid phase reduction product. The dominant electron donor in the sediments proved to be (0.5 M HCl extractable) Fe(II). Sediment Fe(II)/Tc(VII) concentrations >4.3 were generally sufficient for complete reduction of Tc(VII) added [1-2.5 micromol (dry wt. sediment) g(-1)]. At these Fe(II) concentrations, the Tc (VII) reduction rate exceeded that observed previously for Fe(II)-mediated reduction on isolated solids of geologic or biogenic origin, suggesting that sediment Fe(II) was either more reactive and/or that electron shuttles played a role in sediment Tc(VII) reduction processes. In buried peats, Fe(II) in excess did not result in complete removal of Tc from solution, perhaps because organic complexation of Tc(IV) limited formation of the Tc(IV) hydrous oxide. In some sands exhibiting Fe(II)/Tc(VII) concentrations <1.1, there was presumptive evidence for direct enzymatic reduction of Tc(VII). Addition of organic electron donors (acetate, lactate) resulted in microbial reduction of (up to 35%) Fe(III) and corresponding increases in extractable Fe(II) in sands that exhibited lowest initial Tc(VII) reduction and highest hydraulic conductivities, suggesting that accelerated microbial reduction of Fe(III) could offer a viable means of attenuating mobile Tc(VII) in this type of sediment system.


Assuntos
Compostos Ferrosos/metabolismo , Sedimentos Geológicos/microbiologia , Pertecnetato Tc 99m de Sódio/metabolismo , Microbiologia da Água , Poluentes Radioativos da Água/metabolismo , Bactérias/metabolismo , Água Doce/química , Água Doce/microbiologia , Sedimentos Geológicos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA