Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 1398, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082360

RESUMO

Climate change is expected to threaten endemic plants in the Alps. In this context, the factors that may modulate species responses are rarely investigated at a local scale. We analyzed eight alpine narrow endemics of the Dolomites (southeastern Alps) under different predicted climate change scenarios at fine spatial resolutions. We tested possible differences in elevation, topographic heterogeneity and velocity of climate change among areas of gained, lost, or stable climatic habitat. The negative impact of climate change ranged from moderate to severe, depending on scenario and species. Generally, range loss occurred at the lowest elevations, while gained and stable areas were located at highest elevations. For six of the species, climate change velocity had higher values in stable and gained areas than in lost ones. Our findings support the role of topographic heterogeneity in maintaining climatic microrefugia, however, the peculiar topography of the Dolomites, characterized by high altitude plateaus, resulted in high climate change velocity in areas of projected future climatic suitability. Our study supports the usefulness of multiple predictors of spatio-temporal range dynamics for regional climate-adapted management and eventual assisted colonization planning to not overlook or overestimate the potential impact of climate change locally.

2.
Ecol Evol ; 9(23): 13017-13029, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871626

RESUMO

In mountain regions, topological differences on the microscale can strongly affect microclimate and may counteract the average effects of elevation, such as decreasing temperatures. While these interactions are well understood, their effect on plant adaptation is understudied. We investigated winter frost hardiness of Arabidopsis thaliana accessions originating from 13 sites along altitudinal gradients in the Southern Alps during three winters on an experimental field station on the Swabian Jura and compared levels of frost damage with the observed number of frost days and the lowest temperature in eight collection sites. We found that frost hardiness increased with elevation in a log-linear fashion. This is consistent with adaptation to a higher frequency of frost conditions, but also indicates a decreasing rate of change in frost hardiness with increasing elevation. Moreover, the number of frost days measured with temperature loggers at the collection sites correlated much better with frost hardiness than the elevation of collection sites, suggesting that populations were adapted to their local microclimate. Notably, the variance in frost days across sites increased exponentially with elevation. Together, our results suggest that strong microclimate heterogeneity of high alpine environments can preserve functional genetic diversity among small populations. Synthesis: Here, we tested how plant populations differed in their adaptation to frost exposure along an elevation gradient and whether microsite temperatures improve the prediction of frost hardiness. We found that local temperatures, particularly the number of frost days, are a better predictor of the frost hardiness of plants than elevation. This reflects a substantial variance in frost frequency between sites at similar high elevations. We conclude that high mountain regions harbor microsites that differ in their local microclimate and thereby can preserve a high functional genetic diversity among them. Therefore, high mountain regions have the potential to function as a refugium in times of global change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA