Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 261(3): 361-371, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37735782

RESUMO

Activation and transdifferentiation of hepatic stellate cells (HSC) into migratory myofibroblasts is a key process in liver fibrogenesis. Cell migration requires an active remodeling of the cytoskeleton, which is a tightly regulated process coordinated by Rho-specific guanine nucleotide exchange factors (GEFs) and the Rho family of small GTPases. Rho-associated kinase (ROCK) promotes assembly of focal adhesions and actin stress fibers by regulating cytoskeleton organization. GEF exchange protein directly activated by cAMP 1 (EPAC1) has been implicated in modulating TGFß1 and Rho signaling; however, its role in HSC migration has never been examined. The aim of this study was to evaluate the role of cAMP-degrading phosphodiesterase 4 (PDE4) enzymes in regulating EPAC1 signaling, HSC migration, and fibrogenesis. We show that PDE4 protein expression is increased in activated HSCs expressing alpha smooth muscle actin and active myosin light chain (MLC) in fibrotic tissues of human nonalcoholic steatohepatitis cirrhosis livers and mouse livers exposed to carbon tetrachloride. In human livers, TGFß1 levels were highly correlated with PDE4 expression. TGFß1 treatment of LX2 HSCs decreased levels of cAMP and EPAC1 and increased PDE4D expression. PDE4 specific inhibitor, rolipram, and an EPAC-specific agonist decreased TGFß1-mediated cell migration in vitro. In vivo, targeted delivery of rolipram to the liver prevented fibrogenesis and collagen deposition and decreased the expression of several fibrosis-related genes, and HSC activation. Proteomic analysis of mouse liver tissues identified the regulation of actin cytoskeleton by the kinase effectors of Rho GTPases as a major pathway impacted by rolipram. Western blot analyses confirmed that PDE4 inhibition decreased active MLC and endothelin 1 levels, key proteins involved in cytoskeleton remodeling and contractility. The current study, for the first time, demonstrates that PDE4 enzymes are expressed in hepatic myofibroblasts and promote cytoskeleton remodeling and HSC migration. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Actinas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Animais , Humanos , Camundongos , Actinas/metabolismo , Movimento Celular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Fibrose , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia , Proteômica , Rolipram/metabolismo
2.
J Am Soc Nephrol ; 32(7): 1666-1681, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33952630

RESUMO

BACKGROUND: Identification of target antigens PLA2R, THSD7A, NELL1, or Semaphorin-3B can explain the majority of cases of primary membranous nephropathy (MN). However, target antigens remain unidentified in 15%-20% of patients. METHODS: A multipronged approach, using traditional and modern technologies, converged on a novel target antigen, and capitalized on the temporal variation in autoantibody titer for biomarker discovery. Immunoblotting of human glomerular proteins followed by differential immunoprecipitation and mass spectrometric analysis was complemented by laser-capture microdissection followed by mass spectrometry, elution of immune complexes from renal biopsy specimen tissue, and autoimmune profiling on a protein fragment microarray. RESULTS: These approaches identified serine protease HTRA1 as a novel podocyte antigen in a subset of patients with primary MN. Sera from two patients reacted by immunoblotting with a 51-kD protein within glomerular extract and with recombinant human HTRA1, under reducing and nonreducing conditions. Longitudinal serum samples from these patients seemed to correlate with clinical disease activity. As in PLA2R- and THSD7A- associated MN, anti-HTRA1 antibodies were predominantly IgG4, suggesting a primary etiology. Analysis of sera collected during active disease versus remission on protein fragment microarrays detected significantly higher titers of anti-HTRA1 antibody in active disease. HTRA1 was specifically detected within immune deposits of HTRA1-associated MN in 14 patients identified among three cohorts. Screening of 118 "quadruple-negative" (PLA2R-, THSD7A-, NELL1-, EXT2-negative) patients in a large repository of MN biopsy specimens revealed a prevalence of 4.2%. CONCLUSIONS: Conventional and more modern techniques converged to identify serine protease HTRA1 as a target antigen in MN.

3.
J Am Soc Nephrol ; 31(8): 1883-1904, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32561683

RESUMO

BACKGROUND: The mechanisms leading to extracellular matrix (ECM) replacement of areas of glomerular capillaries in histologic variants of FSGS are unknown. This study used proteomics to test the hypothesis that glomerular ECM composition in collapsing FSGS (cFSGS) differs from that of other variants. METHODS: ECM proteins in glomeruli from biopsy specimens of patients with FSGS not otherwise specified (FSGS-NOS) or cFSGS and from normal controls were distinguished and quantified using mass spectrometry, verified and localized using immunohistochemistry (IHC) and confocal microscopy, and assessed for gene expression. The analysis also quantified urinary excretion of ECM proteins and peptides. RESULTS: Of 58 ECM proteins that differed in abundance between cFSGS and FSGS-NOS, 41 were more abundant in cFSGS and 17 in FSGS-NOS. IHC showed that glomerular tuft staining for cathepsin B, cathepsin C, and annexin A3 in cFSGS was significantly greater than in other FSGS variants, in minimal change disease, or in membranous nephropathy. Annexin A3 colocalized with cathepsin B and C, claudin-1, phosphorylated ERK1/2, and CD44, but not with synaptopodin, in parietal epithelial cells (PECs) infiltrating cFSGS glomeruli. Transcripts for cathepsins B and C were increased in FSGS glomeruli compared with normal controls, and urinary excretion of both cathepsins was significantly greater in cFSGS compared with FSGS-NOS. Urinary excretion of ECM-derived peptides was enhanced in cFSGS, although in silico analysis did not identify enhanced excretion of peptides derived from cathepsin B or C. CONCLUSIONS: ECM differences suggest that glomerular sclerosis in cFSGS differs from that in other FSGS variants. Infiltration of activated PECs may disrupt ECM remodeling in cFSGS. These cells and their cathepsins may be therapeutic targets.


Assuntos
Proteínas da Matriz Extracelular/análise , Glomerulosclerose Segmentar e Focal/metabolismo , Glomérulos Renais/metabolismo , Proteômica/métodos , Catepsinas/fisiologia , Células Epiteliais/fisiologia , Humanos , Imuno-Histoquímica , Glomérulos Renais/química , Microscopia Confocal
4.
Chem Res Toxicol ; 33(6): 1403-1417, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32274925

RESUMO

Exposure to arsenic, a class I carcinogen, affects 200 million people globally. Skin is the major target organ, but the molecular etiology of arsenic-induced skin carcinogenesis remains unclear. Arsenite (As3+)-induced disruption of alternative splicing could be involved, but the mechanism is unknown. Zinc finger proteins play key roles in alternative splicing. As3+ can displace zinc (Zn2+) from C3H1 and C4 zinc finger motifs (zfm's), affecting protein function. ZRANB2, an alternative splicing regulator with two C4 zfm's integral to its structure and splicing function, was chosen as a candidate for this study. We hypothesized that As3+ could displace Zn2+ from ZRANB2, altering its structure, expression, and splicing function. As3+/Zn2+ binding and mutual displacement experiments were performed with synthetic apo-peptides corresponding to each ZRANB2 zfm, employing a combination of intrinsic fluorescence, ultraviolet spectrophotometry, zinc colorimetric assay, and liquid chromatography-tandem mass spectrometry. ZRANB2 expression in HaCaT cells acutely exposed to As3+ (0 or 5 µM, 0-72 h; or 0-5 µM, 6 h) was examined by RT-qPCR and immunoblotting. ZRANB2-dependent splicing of TRA2B mRNA, a known ZRANB2 target, was monitored by reverse transcription-polymerase chain reaction. As3+ bound to, as well as displaced Zn2+ from, each zfm. Also, Zn2+ displaced As3+ from As3+-bound zfm's acutely, albeit transiently. As3+ exposure induced ZRANB2 protein expression between 3 and 24 h and at all exposures tested but not ZRANB2 mRNA expression. ZRANB2-directed TRA2B splicing was impaired between 3 and 24 h post-exposure. Furthermore, ZRANB2 splicing function was also compromised at all As3+ exposures, starting at 100 nm. We conclude that As3+ exposure displaces Zn2+ from ZRANB2 zfm's, changing its structure and compromising splicing of its targets, and increases ZRANB2 protein expression as a homeostatic response both at environmental/toxicological exposures and therapeutically relevant doses.


Assuntos
Arsenitos/toxicidade , Poluentes Ambientais/toxicidade , Proteínas de Ligação a RNA/metabolismo , Zinco/metabolismo , Processamento Alternativo/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas de Ligação a RNA/genética
5.
Mol Cell Proteomics ; 17(3): 495-515, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29242380

RESUMO

Developing tumors continuously release nano-sized vesicles that represent circulating "fingerprints" of the tumor's identity. In gastrointestinal stromal tumor (GIST), we have previously reported that these tumors release "oncosomes" carrying the constitutively activated tyrosine kinase (TK) receptor KIT. Despite the clinical utility of TK inhibitors, such as imatinib mesylate (IM), recurrence and metastasis are clinical problems that urge the need to identify new tumor-derived molecules. To this aim, we performed the first high quality proteomic study of GIST-derived exosomes (GDEs) and identified 1,060 proteins composing the core GDE proteome (cGDEp). The cGDEp was enriched in diagnostic markers (e.g. KIT, CD34, ANO1, PROM1, PRKCQ, and ENG), as well as proteins encoded by genes previously reported expressed in GIST (e.g. DPP4, FHL1, CDH11, and KCTD12). Many of these proteins were validated using cell lines, patient-derived KIT+ exosomes, and GIST tissues. We further show that in vitro and in vivo-derived GDE, carry proteins associated with IM response, such as Sprouty homolog 4 (SPRY4), surfeit 4 (SURF4), ALIX, and the cGMP-dependent 3',5'-cyclic phosphodiesterase 2A (PDE2A). Additionally, we report that the total exosome levels and exosome-associated KIT and SPRY4 protein levels have therapeutic values. In fact, molecular characterization of in vivo-derived KIT+ exosomes indicate significant sorting of p-KITTyr719, total KIT, and SPRY4 after IM-treatment of metastatic patients as compared with the pre-IM levels. Our data suggest that analysis of circulating exosomes levels and molecular markers of IM response in GIST patients with primary and metastatic disease is suitable to develop liquid based biopsies for the diagnosis, prognosis, and monitoring of response to treatment of these tumors. In summary, these findings provide the first insight into the proteome of GIST-derived oncosomes and offers a unique opportunity to further understand their oncogenic elements which contribute to tumorigenesis and drug resistance. Data are available via ProteomeXchange with identifier PXD007997.


Assuntos
Biomarcadores Tumorais/sangue , Exossomos/metabolismo , Neoplasias Gastrointestinais/sangue , Tumores do Estroma Gastrointestinal/sangue , Proteínas de Neoplasias/sangue , Linhagem Celular Tumoral , Feminino , Neoplasias Gastrointestinais/diagnóstico , Tumores do Estroma Gastrointestinal/diagnóstico , Humanos , Proteoma
6.
J Proteome Res ; 18(4): 1582-1594, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30807179

RESUMO

Environmental pollution contributes to fatty liver disease pathogenesis. Polychlorinated biphenyl (PCB) exposures have been associated with liver enzyme elevation and suspected steatohepatitis in cohort studies. Male mice treated with the commercial PCB mixture, Aroclor 1260 (20 mg/kg), and fed high fat diet (HFD) for 12 weeks developed steatohepatitis. Receptor-based modes of action including inhibition of the epidermal growth factor (EGF) receptor were previously proposed, but other mechanisms likely exist. Objectives were to identify and validate the pathways, transcription factors, and mechanisms responsible for the steatohepatitis associated with PCB and HFD coexposures. Comparative proteomics analysis was performed in archived mouse liver samples from the aforementioned chronic exposure study. Pathway and transcription factor analysis (TFA) was performed, and selected results were validated. Liver proteomics detected 1103 unique proteins. Aroclor 1260 upregulated 154 and downregulated 93 of these. Aroclor 1260 + HFD coexposures affected 55 pathways including glutathione metabolism, intermediary metabolism, and cytoskeletal remodeling. TFA of Aroclor 1260 treatment demonstrated alterations in the function of 42 transcription factors including downregulation of NRF2 and key nuclear receptors previously demonstrated to protect against steatohepatitis (e.g., HNF4α, FXR, PPARα/δ/γ, etc.). Validation studies demonstrated that Aroclor 1260 significantly reduced HNF4α protein levels, while Aroclor 1260 + HFD reduced expression of the HNF4α target gene, albumin, in vivo. Aroclor 1260 attenuated EGF-dependent HNF4α phosphorylation and target gene activation in vitro. Aroclor 1260 reduced levels of NRF2, its target genes, and glutathione in vivo. Aroclor 1260 attenuated EGF-dependent NRF2 upregulation, in vitro. Aroclor 1260 indirectly activated hepatic stellate cells in vitro via induction of hepatocyte-derived TGFß. PCB exposures adversely impacted transcription factors regulating liver protection, function, and fibrosis. PCBs, thus, compromised the liver by reducing its protective responses against nutritional stress to promote diet-induced steatohepatitis. The identified mechanisms by which environmental pollutants influence fatty liver disease pathogenesis require confirmation in humans.


Assuntos
Dieta Hiperlipídica , Fígado , Hepatopatia Gordurosa não Alcoólica , Bifenilos Policlorados/toxicidade , Proteoma , Animais , Linhagem Celular , Fígado/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteoma/análise , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Proteômica
7.
J Biol Chem ; 293(16): 5895-5908, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29523688

RESUMO

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is an integral component of proliferative signaling. EGFRs on the cell surface become activated upon EGF binding and have an increased rate of endocytosis. Once in the cytoplasm, the EGF·EGFR complex is trafficked to the lysosome for degradation, and signaling is terminated. During trafficking, the EGFR kinase domain remains active, and the internalized EGFR can continue signaling to downstream effectors. Although effector activity varies based on the EGFR's endocytic location, it is not clear how this occurs. In an effort to identify proteins that uniquely associate with the internalized, liganded EGFR in the early endosome, we developed an early endosome isolation strategy to analyze their protein composition. Post-nuclear supernatant from HeLa cells stimulated with and without EGF were separated on an isotonic 17% Percoll gradient. The gradient was fractionated, and early endosomal fractions were pooled and immunoisolated with an EEA1 mAb. The isolated endosomes were validated by immunoblot using antibodies against organelle-specific marker proteins and transmission EM. These early endosomes were also subjected to LC-MS/MS for proteomic analysis. Five proteins were detected in endosomes in a ligand-dependent manner: EGFR, RUFY1, STOML2, PTPN23, and CCDC51. Knockdown of RUFY1 or PTPN23 by RNAi indicated that both proteins play a role in EGFR trafficking. These experiments indicate that endocytic trafficking of activated EGFR changes the protein composition, membrane trafficking, and signaling potential of the early endosome.


Assuntos
Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Endocitose , Receptores ErbB/metabolismo , Células HeLa , Humanos , Transporte Proteico , Proteômica , Transdução de Sinais
8.
J Am Soc Nephrol ; 29(2): 644-653, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29074737

RESUMO

Primary renal tubulointerstitial disease resulting from proximal tubule antigen-specific antibodies and immune complex formation has not been well characterized in humans. We report a cohort of patients with a distinct, underappreciated kidney disease characterized by kidney antibrush border antibodies and renal failure (ABBA disease). We identified ten patients with ABBA disease who had a combination of proximal tubule damage, IgG-positive immune deposits in the tubular basement membrane, and circulating antibodies reactive with normal human kidney proximal tubular brush border. All but one of the patients also had segmental glomerular deposits on renal biopsy specimen. Patients with ABBA disease were elderly and presented with AKI and subnephrotic proteinuria. Serum from all patients but not controls recognized a high molecular weight protein in renal tubular protein extracts that we identified as LDL receptor-related protein 2 (LRP2), also known as megalin, by immunoprecipitation and mass spectrometry. Immunostaining revealed that LRP2 specifically colocalized with IgG in the tubular immune deposits on the ABBA biopsy specimen but not the control specimen analyzed. Finally, ABBA serum samples but not control samples showed reactivity against recombinantly expressed N-terminal LRP2 fragments on Western blots and immunoprecipitated the recombinantly expressed N-terminal region of LRP2. This case series details the clinicopathologic findings of patients with ABBA disease and shows that the antigenic target of these autoantibodies is LRP2. Future studies are needed to determine the disease prevalence, stimulus for ABBA, and optimal treatment.


Assuntos
Autoanticorpos/sangue , Túbulos Renais Proximais/imunologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Nefrite Intersticial/imunologia , Injúria Renal Aguda/imunologia , Idoso , Idoso de 80 Anos ou mais , Membrana Basal/metabolismo , Feminino , Humanos , Imunoglobulina G/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Microvilosidades/imunologia , Nefrite Intersticial/metabolismo , Nefrite Intersticial/patologia
9.
Hepatology ; 65(3): 969-982, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28035785

RESUMO

The extracellular matrix (ECM) consists of diverse components that work bidirectionally with surrounding cells to create a responsive microenvironment. In some contexts (e.g., hepatic fibrosis), changes to the ECM are well recognized and understood. However, it is becoming increasingly accepted that the hepatic ECM proteome (i.e., matrisome) responds dynamically to stress well before fibrosis. The term "transitional tissue remodeling" describes qualitative and quantitative ECM changes in response to injury that do not alter the overall architecture of the organ; these changes in ECM may contribute to early disease initiation and/or progression. The nature and magnitude of these changes to the ECM in liver injury are poorly understood. The goals of this work were to validate analysis of the ECM proteome and compare the impact of 6 weeks of ethanol diet and/or acute lipopolysaccharide (LPS). Liver sections were processed in a series of increasingly rigorous extraction buffers to separate proteins by solubility. Extracted proteins were identified using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Both ethanol and LPS dramatically increased the number of matrisome proteins ∼25%. The enhancement of LPS-induced liver damage by ethanol preexposure was associated with unique protein changes. CONCLUSION: An extraction method to enrich the hepatic ECM was characterized. The results demonstrate that the hepatic matrisome responds dynamically to both acute (LPS) and chronic (ethanol) stresses, long before more-dramatic fibrotic changes to the liver occur. The changes to the mastrisome may contribute, at least in part, to the pathological responses to these stresses. It is also interesting that several ECM proteins responded similarly to both stresses, suggesting a common mechanism in both models. Nevertheless, there were responses that were unique to the individual and combined exposures. (Hepatology 2017;65:969-982).


Assuntos
Etanol/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Lipopolissacarídeos/farmacologia , Cirrose Hepática/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/efeitos dos fármacos , Cirrose Hepática/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Proteoma/genética , Distribuição Aleatória , Fatores de Risco , Sensibilidade e Especificidade
10.
Biochim Biophys Acta Proteins Proteom ; 1865(2): 186-194, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27816562

RESUMO

BACKGROUND: A targeted analysis of the 50kDa C-terminal fragment of insulin-response element binding protein-1 (IRE-BP1) activation of target genes through the insulin receptor substrate receptor/PI-3 kinase/Akt pathway has been demonstrated for the insulin growth factor-1 receptor. The broader effects of 50kDa C-terminal IRE-BP1 fragment over-expression on protein abundance in pancreatic islet beta cells have not been determined. RESULTS: Liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses of replicate lysates of pancreatic islets isolated from background strain animals and transgenic animals, overexpressing IRE-BP1 in pancreatic islet beta cells, demonstrated statistically significant increases in the expression of proteins involved in protein synthesis, endoplasmic reticulum (ER) stress and scaffolding proteins important for protein kinase C signaling; some of which were confirmed by immunoblot analyses. Bioinformatic analysis of protein expression network patterns suggested IRE-BP1 over-expression leads to protein expression patterns indicative of activation of functional protein networks utilized for protein post-translational modification, protein folding, and protein synthesis. Co-immunoprecipitation experiments demonstrate a novel interaction between two differentially regulated proteins receptor for activated protein kinase C (RACK1) and translationally controlled tumor protein (TCTP). CONCLUSIONS: Proteomic analysis of IRE-BP1 over-expression in pancreatic islet beta cells suggest IRE-BP1 (a) directly or indirectly through establishing hyperglycemia results in increased expression of ribosomal proteins and markers of ER stress and (b) leads to the enhanced and previously un-described interaction of RACK1 and TCTP. SIGNIFICANCE: This study identified C-terminal 50kDa domain of IRE-BP1 over-expression results in increased markers of ER-stress and a novel interaction between the scaffolding proteins RACK1 and TCTP.


Assuntos
Biomarcadores Tumorais/metabolismo , Biomarcadores/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Ilhotas Pancreáticas/metabolismo , Neuropeptídeos/metabolismo , Animais , Estresse do Retículo Endoplasmático/fisiologia , Hiperglicemia , Insulina/metabolismo , Camundongos , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteômica/métodos , Receptores de Quinase C Ativada , Elementos de Resposta/fisiologia , Proteína Tumoral 1 Controlada por Tradução
11.
Proteomics ; 15(21): 3722-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26304790

RESUMO

Urinary microvesicles constitute a rich source of membrane-bound and intracellular proteins that may provide important clues of pathophysiological mechanisms in renal disease. In the current study, we analyzed and compared the proteome of urinary microvesicles from patients with idiopathic membranous nephropathy (iMN), idiopathic focal segmental glomerulosclerosis (iFSGS), and normal controls using an approach that combined both proteomics and pathology analysis. Lysosome membrane protein-2 (LIMP-2) was increased greater than twofold in urinary microvesicles obtained from patients with iMN compared to microvesicles of patients with iFSGS and normal controls. Immunofluorescence analysis of renal biopsies confirmed our proteomics findings that LIMP-2 was upregulated in glomeruli from patients with iMN but not in glomeruli of diseased patients (iFSGS, minimal change nephropathy, IgA nephropathy, membranoproliferative glomerulonephritis) and normal controls. Confocal laser microscopy showed co-localization of LIMP-2 with IgG along the glomerular basement membrane. Serum antibodies against LIMP-2 could not be detected. In conclusion, our data show the value of urinary microvesicles in biomarker discovery and provide evidence for de novo expression of LIMP-2 in glomeruli of patients with iMN.


Assuntos
Glomerulonefrite Membranosa/urina , Glomerulosclerose Segmentar e Focal/urina , Glomérulos Renais/patologia , Proteínas de Membrana Lisossomal/análise , Proteínas de Membrana Lisossomal/urina , Receptores Depuradores/análise , Glomerulonefrite Membranosa/patologia , Glomerulosclerose Segmentar e Focal/patologia , Humanos
12.
Biochem J ; 456(3): 453-62, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24090352

RESUMO

NRMT (N-terminal regulator of chromatin condensation 1 methyltransferase) was the first eukaryotic methyltransferase identified to specifically methylate the free α-amino group of proteins. Since the discovery of this N-terminal methyltransferase, many new substrates have been identified and the modification itself has been shown to regulate DNA-protein interactions. Sequence analysis predicts one close human homologue of NRMT, METTL11B (methyltransferase-like protein 11B, now renamed NRMT2). We show in the present paper for the first time that NRMT2 also has N-terminal methylation activity and recognizes the same N-terminal consensus sequences as NRMT (now NRMT1). Both enzymes have similar tissue expression and cellular localization patterns. However, enzyme assays and MS experiments indicate that they differ in their specific catalytic functions. Although NRMT1 is a distributive methyltransferase that can mono-, di- and tri-methylate its substrates, NRMT2 is primarily a monomethylase. Concurrent expression of NRMT1 and NRMT2 accelerates the production of trimethylation, and we propose that NRMT2 activates NRMT1 by priming its substrates for trimethylation.


Assuntos
Metiltransferases/metabolismo , Catálise , Células HEK293 , Humanos , Metilação , Metiltransferases/genética , Especificidade por Substrato/fisiologia
13.
Environ Toxicol Pharmacol ; 107: 104430, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552755

RESUMO

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to increase due in part to the obesity epidemic and to environmental exposures to metabolism disrupting chemicals. A single gavage exposure of male mice to Aroclor 1260 (Ar1260), an environmentally relevant mixture of non-dioxin-like polychlorinated biphenyls (PCBs), resulted in steatohepatitis and altered RNA modifications in selenocysteine tRNA 34 weeks post-exposure. Unbiased approaches identified the liver proteome, selenoproteins, and levels of 25 metals. Ar1260 altered the abundance of 128 proteins. Enrichment analysis of the liver Ar1260 proteome included glutathione metabolism and translation of selenoproteins. Hepatic glutathione peroxidase 4 (GPX4) and Selenoprotein O (SELENOO) were increased and Selenoprotein F (SELENOF), Selenoprotein S (SELENOS), Selenium binding protein 2 (SELENBP2) were decreased with Ar1260 exposure. Increased copper, selenium (Se), and zinc and reduced iron levels were detected. These data demonstrate that Ar1260 exposure alters the (seleno)proteome, Se, and metals in MASLD-associated pathways.


Assuntos
Arocloros , Fígado Gorduroso , Selênio , Masculino , Camundongos , Animais , Proteoma/metabolismo , Glutationa Peroxidase/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Fígado/metabolismo
14.
Kidney Int ; 83(6): 1177-84, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23466993

RESUMO

The ability of microalbuminuria to predict early progressive renal function decline in type 1 diabetic patients has been questioned. To resolve this, we determined the plasma proteome differences between microalbuminuric patients with type 1 diabetes and stable renal function (controls) and patients at risk for early progressive renal function decline (cases) and asked whether these differences have value as surrogate biomarkers. Mass spectrometry was used to analyze small (<3 kDa) plasma peptides isolated from well-matched case and control plasma obtained at the beginning of an 8-12 year follow-up period. A Spearman analysis of plasma peptide abundance and the rate of renal function decline during follow-up identified seven masses with a significant negative correlation with early progressive renal function decline. Tandem mass spectrometry identified three fragments of high-molecular-weight kininogen. Increased plasma high-molecular-weight kininogen in the cases was confirmed by immunoblot. One peptide, des-Arg9-BK(1-8), induced Erk1/2 phosphorylation when added apically to two proximal tubular cell lines grown on permeable inserts. Thus, we have identified plasma protein fragments, some of which have biological activity with moderate to strong correlation, with early progressive renal function decline in microalbuminuric patients with type 1 diabetes. Other peptides are candidates for validation as candidate biomarkers of diabetes-associated renal dysfunction.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/etiologia , Cininogênio de Alto Peso Molecular/sangue , Fragmentos de Peptídeos/sangue , Albuminúria/sangue , Albuminúria/etiologia , Animais , Biomarcadores/sangue , Estudos de Casos e Controles , Linhagem Celular , Cromatografia Líquida , Diabetes Mellitus Tipo 1/sangue , Nefropatias Diabéticas/sangue , Progressão da Doença , Humanos , Túbulos Renais Proximais/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Peso Molecular , Fosforilação , Projetos Piloto , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Fatores de Tempo
15.
bioRxiv ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778394

RESUMO

Although liver transplantation (LT) is an effective therapy for cirrhosis, the risk of post-LT NASH is alarmingly high and is associated with accelerated progression to fibrosis/cirrhosis, cardiovascular disease, and decreased survival. Lack of risk stratification strategies hamper liver undergoes significant remodeling during inflammatory injury. During such remodeling, degraded peptide fragments (i.e., 'degradome') of the ECM and other proteins increase in plasma, making it a useful diagnostic/prognostic tool in chronic liver disease. To investigate whether inflammatory liver injury caused by post-LT NASH would yield a unique degradome profile, predictive of severe post-LT NASH fibrosis, we performed a retrospective analysis of 22 biobanked samples from the Starzl Transplantation Institute (12 with post-LT NASH after 5 years and 10 without). Total plasma peptides were isolated and analyzed by 1D-LC-MS/MS analysis using a Proxeon EASY-nLC 1000 UHPLC and nanoelectrospray ionization into an Orbitrap Elite mass spectrometer. Qualitative and quantitative peptide features data were developed from MSn datasets using PEAKS Studio X (v10). LC-MS/MS yielded ∼2700 identifiable peptide features based on the results from Peaks Studio analysis. Several peptides were significantly altered in patients that later developed fibrosis and heatmap analysis of the top 25 most significantly-changed peptides, most of which were ECM-derived, clustered the 2 patient groups well. Supervised modeling of the dataset indicated that a fraction of the total peptide signal (∼15%) could explain the differences between the groups, indicating a strong potential for representative biomarker selection. A similar degradome profile was observed when the plasma degradome patterns were compared being obesity sensitive (C57Bl6/J) and insensitive (AJ) mouse strains. Both The plasma degradome profile of post-LT patients yields stark difference based on later development of post-LT NASH fibrosis. This approach could yield new "fingerprints" that can serve as minimally-invasive biomarkers of negative outcomes post-LT.

16.
Sci Rep ; 13(1): 9965, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340062

RESUMO

Although liver transplantation (LT) is an effective therapy for cirrhosis, the risk of post-LT NASH is alarmingly high and is associated with accelerated progression to fibrosis/cirrhosis, cardiovascular disease and decreased survival. Lack of risk stratification strategies hampers early intervention against development of post-LT NASH fibrosis. The liver undergoes significant remodeling during inflammatory injury. During such remodeling, degraded peptide fragments (i.e., 'degradome') of the ECM and other proteins increase in plasma, making it a useful diagnostic/prognostic tool in chronic liver disease. To investigate whether liver injury caused by post-LT NASH would yield a unique degradome profile that is predictive of severe post-LT NASH fibrosis, a retrospective analysis of 22 biobanked samples from the Starzl Transplantation Institute (12 with post-LT NASH after 5 years and 10 without) was performed. Total plasma peptides were isolated and analyzed by 1D-LC-MS/MS analysis using a Proxeon EASY-nLC 1000 UHPLC and nanoelectrospray ionization into an Orbitrap Elite mass spectrometer. Qualitative and quantitative peptide features data were developed from MSn datasets using PEAKS Studio X (v10). LC-MS/MS yielded ~ 2700 identifiable peptide features based on the results from Peaks Studio analysis. Several peptides were significantly altered in patients that later developed fibrosis and heatmap analysis of the top 25 most significantly changed peptides, most of which were ECM-derived, clustered the 2 patient groups well. Supervised modeling of the dataset indicated that a fraction of the total peptide signal (~ 15%) could explain the differences between the groups, indicating a strong potential for representative biomarker selection. A similar degradome profile was observed when the plasma degradome patterns were compared being obesity sensitive (C57Bl6/J) and insensitive (AJ) mouse strains. The plasma degradome profile of post-LT patients yielded stark difference based on later development of post-LT NASH fibrosis. This approach could yield new "fingerprints" that can serve as minimally-invasive biomarkers of negative outcomes post-LT.


Assuntos
Transplante de Fígado , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Transplante de Fígado/métodos , Hepatopatia Gordurosa não Alcoólica/complicações , Estudos Retrospectivos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cirrose Hepática/complicações
17.
medRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168372

RESUMO

Alcohol-related hepatitis (AH) is plagued with high mortality and difficulty in identifying at-risk patients. The extracellular matrix undergoes significant remodeling during inflammatory liver injury that can be detected in biological fluids and potentially used for mortality prediction. EDTA plasma samples were collected from AH patients (n= 62); Model for End-Stage Liver Disease (MELD) score defined AH severity as moderate (12-20; n=28) and severe (>20; n=34). The peptidome data was collected by high resolution, high mass accuracy UPLC-MS. Univariate and multivariate analyses identified differentially abundant peptides, which were used for Gene Ontology, parent protein matrisomal composition and protease involvement. Machine learning methods were used on patient-specific peptidome and clinical data to develop mortality predictors. Analysis of plasma peptides from AH patients and healthy controls identified over 1,600 significant peptide features corresponding to 130 proteins. These were enriched for ECM fragments in AH samples, likely related to turnover of hepatic-derived proteins. Analysis of moderate versus severe AH peptidomes showed a shift in abundance of peptides from collagen 1A1 and fibrinogen A proteins. The dominant proteases for the AH peptidome spectrum appear to be CAPN1 and MMP12. Increase in hepatic expression of these proteases was orthogonally-validated in RNA-seq data of livers from AH patients. Causal graphical modeling identified four peptides directly linked to 90-day mortality in >90% of the learned graphs. These peptides improved the accuracy of mortality prediction over MELD score and were used to create a clinically applicable mortality prediction assay. A signature based on plasma peptidome is a novel, non-invasive method for prognosis stratification in AH patients. Our results could also lead to new mechanistic and/or surrogate biomarkers to identify new AH mechanisms. Lay summary: We used degraded proteins found the blood of alcohol-related hepatitis patients to identify new potential mechanisms of injury and to predict 90 day mortality.

18.
Environ Health Perspect ; 130(1): 17011, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35072517

RESUMO

BACKGROUND: Chronic arsenic exposure via drinking water is associated with an increased risk of developing cancer and noncancer chronic diseases. Pre-mRNAs are often subject to alternative splicing, generating mRNA isoforms encoding functionally distinct protein isoforms. The resulting imbalance in isoform species can result in pathogenic changes in critical signaling pathways. Alternative splicing as a mechanism of arsenic-induced toxicity and carcinogenicity is understudied. OBJECTIVE: This study aimed to accurately profile differential alternative splicing events in human keratinocytes induced by chronic arsenic exposure that might play a role in carcinogenesis. METHODS: Independent quadruplicate cultures of immortalized human keratinocytes (HaCaT) were maintained continuously for 28 wk with 0 or 100 nM sodium arsenite. RNA-sequencing (RNA-Seq) was performed with poly(A) RNA isolated from cells harvested at 7, 19, and 28 wk with subsequent replicate multivariate analysis of transcript splicing (rMATS) analysis to detect and quantify differential alternative splicing events. Reverse transcriptase-polymerase chain reaction (RT-PCR) for selected alternative splicing events was performed to validate RNA-Seq predictions. Functional enrichment was performed by gene ontology (GO) analysis of the differential alternative splicing event data set at each time point. RESULTS: At least 600 differential alternative splicing events were detected at each time point tested, comprising all the five main types of alternative splicing and occurring in both open reading frames (ORFs) and untranslated regions (UTRs). Based on functional relevance ELK4, SHC1, and XRRA1 were selected for validation of predicted alternative splicing events at 7 wk by RT-PCR. Densitometric analysis of RT-PCR data corroborated the rMATS predicted alternative splicing for all three events. Protein expression validation of the selected alternative splicing events was challenging given that very few isoform-specific antibodies are available. GO analysis demonstrated that the enriched terms in differential alternatively spliced mRNAs changed dynamically with the time of exposure. Notably, RNA metabolism and splicing regulation pathways were enriched at the 7-wk time point, when the greatest number of differentially alternatively spliced mRNAs are detected. Our preliminary proteomic analysis demonstrated that the expression of the canonical isoforms of the splice regulators DDX42, RMB25, and SRRM2 were induced upon chronic arsenic exposure, corroborating the splicing predictions. DISCUSSION: These results using cultures of HaCaT cells suggest that arsenic exposure disrupted an alternative splice factor network and induced time-dependent genome-wide differential alternative splicing that likely contributed to the changing proteomic landscape in arsenic-induced carcinogenesis. However, significant challenges remain in corroborating alternative splicing data at the proteomic level. https://doi.org/10.1289/EHP9676.


Assuntos
Arsênio , Processamento Alternativo , Arsênio/metabolismo , Arsênio/toxicidade , Células HaCaT , Humanos , Queratinócitos/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteômica
19.
Glomerular Dis ; 2(3): 121-131, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36199623

RESUMO

Chronic kidney disease (CKD) affects 30 million adults, costs ~$79 billion dollars (2016) in Medicare expenditures, and is the ninth leading cause of death in the United States. The disease is silent or undiagnosed in almost half of people with severely reduced kidney function. Urine provides an ideal biofluid that is accessible to high-sensitivity mass spectrometry-based proteomic interrogation and is an indicator of renal homeostasis. While the accurate and precise diagnosis and better disease management of CKD can be aided using urine biomarkers, their discovery in excessive protein or nephrotic urine samples can present challenges. In this work we present a mass spectrometry-based method utilizing multiplex tandem mass tag (TMT) quantification and improved protein quantification using reporter ion normalization to urinary creatinine to analyze urinary proteins from patients with a form of nephrotic syndrome (FSGS). A comparative analysis was performed for urine from patients in remission versus active disease flare. Two-dimensional LC-MS/MS TMT quantitative analysis identified over 1058 urine proteins, 580 proteins with 2 peptides or greater and quantifiable. Normalization of TMT abundance values to creatinine per ml of urine concentrated reduced variability in 2D-TMT-LC-MS/MS experiments. Univariate and multivariate analyses showed that 27 proteins were significantly increased in proteinuric disease flare. Hierarchical heatmap clustering showed that SERPINA1 and ORM1 were >1.5 fold increased in active disease versus remission urine samples. ELISA validation of SERPINA1 and ORM1 abundance agreed with our quantitative TMT proteomics analysis. These findings provide support for the utility of this method for identification of novel diagnostic markers of CKD and identify SERPINA1 and ORM1 as promising candidate diagnostic markers for FSGS.

20.
Toxicol Rep ; 9: 1566-1573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158865

RESUMO

Previous studies have shown that inhibition or depletion of N-acetyltransferase 1 (NAT1) in breast cancer cell lines leads to growth retardation both in vitro and in vivo, suggesting that NAT1 contributes to rapid growth of breast cancer cells. To understand molecular and cellular processes that NAT1 contributes to and generate novel hypotheses in regard to NAT1's role in breast cancer, we performed an unbiased analysis of proteomes of parental MDA-MB-231 breast cancer cells and two separate NAT1 knockout (KO) cell lines. Among 4890 proteins identified, 737 proteins were found significantly (p < 0.01) upregulated, and 651 proteins were significantly (p < 0.01) downregulated in both NAT1 KO cell lines. We performed enrichment analyses to identify Gene Ontology biological processes, molecular functions, and cellular components that were enriched in each data set. Among the proteins upregulated in NAT1 KO cells, pathways associated with MHC (major histocompatibility complex) I-mediated antigen presentation were significantly enriched. This raises an interesting and new hypothesis that upregulation of NAT1 in breast cancer cells may aid them evade immune detection. Multiple pathways involved in mitochondrial functions were collectively downregulated in NAT1 KO cells, including multiple subunits of mitochondrial ATP synthase (Complex V of the electron transport chain). This was accompanied by a reduction in cell cycle-associated proteins and an increase in pro-apoptotic pathways in NAT1 KO cells, consistent with reported observations that NAT1 KO cells exhibit a slower growth rate both in vitro and in vivo. Thus, mitochondrial dysfunction in NAT1 KO cells likely contributes to growth retardation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA