Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36789910

RESUMO

Frizzled 2 (FZD2) is a transmembrane Wnt receptor. We previously identified a pathogenic human FZD2 variant in individuals with FZD2-associated autosomal dominant Robinow syndrome. The variant encoded a protein with a premature stop and loss of 17 amino acids, including a region of the consensus dishevelled-binding sequence. To model this variant, we used zygote microinjection and i-GONAD-based CRISPR/Cas9-mediated genome editing to generate a mouse allelic series. Embryos mosaic for humanized Fzd2W553* knock-in exhibited cleft palate and shortened limbs, consistent with patient phenotypes. We also generated two germline mouse alleles with small deletions: Fzd2D3 and Fzd2D4. Homozygotes for each allele exhibit a highly penetrant cleft palate phenotype, shortened limbs compared with wild type and perinatal lethality. Fzd2D4 craniofacial tissues indicated decreased canonical Wnt signaling. In utero treatment with IIIC3a (a DKK inhibitor) normalized the limb lengths in Fzd2D4 homozygotes. The in vivo replication represents an approach for further investigating the mechanism of FZD2 phenotypes and demonstrates the utility of CRISPR knock-in mice as a tool for investigating the pathogenicity of human genetic variants. We also present evidence for a potential therapeutic intervention.


Assuntos
Fissura Palatina , Nanismo , Deformidades Congênitas dos Membros , Anormalidades Urogenitais , Animais , Humanos , Camundongos , Fissura Palatina/genética , Nanismo/genética , Deformidades Congênitas dos Membros/genética , Anormalidades Urogenitais/genética , Via de Sinalização Wnt/genética , Modelos Animais de Doenças , Receptores Frizzled/genética , Técnicas de Introdução de Genes
2.
Genes Dev ; 31(9): 916-926, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28546512

RESUMO

Wnt/ß-catenin signaling is activated when extracellular Wnt ligands bind Frizzled (FZD) receptors at the cell membrane. Wnts bind FZD cysteine-rich domains (CRDs) with high affinity through a palmitoylated N-terminal "thumb" and a disulfide-stabilized C-terminal "index finger," yet how these binding events trigger receptor activation and intracellular signaling remains unclear. Here we report the crystal structure of the Frizzled-4 (FZD4) CRD in complex with palmitoleic acid, which reveals a CRD tetramer consisting of two cross-braced CRD dimers. Each dimer is stabilized by interactions of one hydrophobic palmitoleic acid tail with two CRD palmitoleoyl-binding grooves oriented end to end, suggesting that the Wnt palmitoleoyl group stimulates CRD-CRD interaction. Using bioluminescence resonance energy transfer (BRET) in live cells, we show that WNT5A stimulates dimerization of membrane-anchored FZD4 CRDs and oligomerization of full-length FZD4, which requires the integrity of CRD palmitoleoyl-binding residues. These results suggest that FZD receptors may form signalosomes in response to Wnt binding through the CRDs and that the Wnt palmitoleoyl group is important in promoting these interactions. These results complement our understanding of lipoprotein receptor-related proteins 5 and 6 (LRP5/6), Dishevelled, and Axin signalosome assembly and provide a more complete model for Wnt signalosome assembly both intracellularly and at the membrane.


Assuntos
Cisteína/química , Ácidos Graxos Monoinsaturados/química , Receptores Frizzled/química , Proteína Wnt-5a/metabolismo , Cristalografia por Raios X , Cisteína/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Receptores Frizzled/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
3.
Physiol Rev ; 97(3): 1211-1228, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28615463

RESUMO

The identification of the low-density lipoprotein receptor (LDLR) provided a foundation for subsequent studies in lipoprotein metabolism, receptor-mediated endocytosis, and many other fundamental biological functions. The importance of the LDLR led to numerous studies that identified homologous molecules and ultimately resulted in the description of the LDL-receptor superfamily, a group of proteins that contain domains also found in the LDLR. Subsequent studies have revealed that members of the LDLR-related protein family play roles in regulating many aspects of signal transduction. This review is focused on the roles of selected members of this protein family in skeletal development and disease. We present background on the identification of this subgroup of receptors, discuss the phenotypes associated with alterations in their function in human patients and mouse models, and describe the current efforts to therapeutically target these proteins to treat human skeletal disease.


Assuntos
Doenças Ósseas/metabolismo , Regeneração Óssea , Osso e Ossos/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Osteogênese , Transdução de Sinais , Animais , Doenças Ósseas/genética , Doenças Ósseas/patologia , Doenças Ósseas/fisiopatologia , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Camundongos Transgênicos , Fenótipo
4.
Carcinogenesis ; 44(1): 54-64, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36548952

RESUMO

Loss of heterozygosity and promoter hypermethylation of APC is frequently observed in human endometrial cancer, which is the most common gynecological cancer in the USA, but its carcinogenic driver status in the endometrial epithelium has not been confirmed. We have identified a novel population of progenitor endometrial epithelial cells (EECs) in mice that express lysozyme M (LysM) and give rise to approximately 15% of all EECs in adult mice. LysM is a glycoside hydrolase that is encoded by Lyz2 and functions to protect cells from bacteria as part of the innate immune system. Its expression has been shown in a subset of hematopoietic stem cells and in specialized lung and small intestinal epithelial cells. Conditional deletion of Apc in LysM + EECs results in significantly more epithelial cells compared to wild-type mice. At 5 months of age, the ApccKO mice have enlarged uterine horns with pathology that is consistent with endometrial hyperplasia with cystic endometrial glands, non-villous luminal papillae and nuclear atypia. Nuclear accumulation of ß-catenin and ERα, both of which are known to induce endometrial hyperplasia, was observed in the EECs of the ApccKO mice. These results confirm that loss of APC in EECs can result in a phenotype similar to endometrial hyperplasia.


Assuntos
Hiperplasia Endometrial , Neoplasias do Endométrio , Adulto , Feminino , Humanos , Camundongos , Animais , Hiperplasia Endometrial/genética , Hiperplasia Endometrial/patologia , Células Epiteliais/patologia , Endométrio/patologia , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Células-Tronco/metabolismo
5.
Nature ; 545(7653): 234-237, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28467818

RESUMO

Wnt proteins modulate cell proliferation and differentiation and the self-renewal of stem cells by inducing ß-catenin-dependent signalling through the Wnt receptor frizzled (FZD) and the co-receptors LRP5 and LRP6 to regulate cell fate decisions and the growth and repair of several tissues. The 19 mammalian Wnt proteins are cross-reactive with the 10 FZD receptors, and this has complicated the attribution of distinct biological functions to specific FZD and Wnt subtype interactions. Furthermore, Wnt proteins are modified post-translationally by palmitoylation, which is essential for their secretion, function and interaction with FZD receptors. As a result of their acylation, Wnt proteins are very hydrophobic and require detergents for purification, which presents major obstacles to the preparation and application of recombinant Wnt proteins. This hydrophobicity has hindered the determination of the molecular mechanisms of Wnt signalling activation and the functional importance of FZD subtypes, and the use of Wnt proteins as therapeutic agents. Here we develop surrogate Wnt agonists, water-soluble FZD-LRP5/LRP6 heterodimerizers, with FZD5/FZD8-specific and broadly FZD-reactive binding domains. Similar to WNT3A, these Wnt agonists elicit a characteristic ß-catenin signalling response in a FZD-selective fashion, enhance the osteogenic lineage commitment of primary mouse and human mesenchymal stem cells, and support the growth of a broad range of primary human organoid cultures. In addition, the surrogates can be systemically expressed and exhibit Wnt activity in vivo in the mouse liver, regulating metabolic liver zonation and promoting hepatocyte proliferation, resulting in hepatomegaly. These surrogates demonstrate that canonical Wnt signalling can be activated by bi-specific ligands that induce receptor heterodimerization. Furthermore, these easily produced, non-lipidated Wnt surrogate agonists facilitate functional studies of Wnt signalling and the exploration of Wnt agonists for translational applications in regenerative medicine.


Assuntos
Transdução de Sinais , Proteínas Wnt/agonistas , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Receptores Frizzled/metabolismo , Células HEK293 , Hepatócitos/citologia , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Intestinos/citologia , Ligantes , Fígado/metabolismo , Fígado/patologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Modelos Moleculares , Organoides/citologia , Organoides/metabolismo , Multimerização Proteica , Solubilidade , Técnicas de Cultura de Tecidos
6.
PLoS Genet ; 16(5): e1008361, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32463812

RESUMO

Osteocalcin (OCN), the most abundant noncollagenous protein in the bone matrix, is reported to be a bone-derived endocrine hormone with wide-ranging effects on many aspects of physiology, including glucose metabolism and male fertility. Many of these observations were made using an OCN-deficient mouse allele (Osc-) in which the 2 OCN-encoding genes in mice, Bglap and Bglap2, were deleted in ES cells by homologous recombination. Here we describe mice with a new Bglap and Bglap2 double-knockout (dko) allele (Bglap/2p.Pro25fs17Ter) that was generated by CRISPR/Cas9-mediated gene editing. Mice homozygous for this new allele do not express full-length Bglap or Bglap2 mRNA and have no immunodetectable OCN in their serum. FTIR imaging of cortical bone in these homozygous knockout animals finds alterations in the collagen maturity and carbonate to phosphate ratio in the cortical bone, compared with wild-type littermates. However, µCT and 3-point bending tests do not find differences from wild-type littermates with respect to bone mass and strength. In contrast to the previously reported OCN-deficient mice with the Osc-allele, serum glucose levels and male fertility in the OCN-deficient mice with the Bglap/2pPro25fs17Ter allele did not have significant differences from wild-type littermates. We cannot explain the absence of endocrine effects in mice with this new knockout allele. Possible explanations include the effects of each mutated allele on the transcription of neighboring genes, or differences in genetic background and environment. So that our findings can be confirmed and extended by other interested investigators, we are donating this new Bglap and Bglap2 double-knockout strain to the Jackson Laboratories for academic distribution.


Assuntos
Sistema Endócrino/fisiologia , Osteocalcina/genética , Animais , Densidade Óssea/genética , Osso e Ossos/metabolismo , Sistema Endócrino/metabolismo , Feminino , Fertilidade/genética , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteocalcina/deficiência
7.
J Biol Chem ; 296: 100782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34000297

RESUMO

Hyperactivation of Wnt/ß-catenin (canonical) signaling in colorectal cancers (CRCs) was identified in the 1990s. Most CRC patients have mutations in genes that encode components of the Wnt pathway. Inactivating mutations in the adenomatous polyposis coli (APC) gene, which encodes a protein necessary for ß-catenin degradation, are by far the most prevalent. Other Wnt signaling components are mutated in a smaller proportion of CRCs; these include a FZD-specific ubiquitin E3 ligase known as ring finger protein 43 that removes FZDs from the cell membrane. Our understanding of the genetic and epigenetic landscape of CRC has grown exponentially because of contributions from high-throughput sequencing projects such as The Cancer Genome Atlas. Despite this, no Wnt modulators have been successfully developed for CRC-targeted therapies. In this review, we will focus on the Wnt receptor complex, and speculate on recent discoveries about ring finger protein 43regulating Wnt receptors in CRCs. We then review the current debate on a new APC-Wnt receptor interaction model with therapeutic implications.


Assuntos
Neoplasias do Colo/terapia , Receptores Wnt/metabolismo , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Genes APC , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Mutação , Transdução de Sinais , beta Catenina/metabolismo
8.
Exp Eye Res ; 217: 108977, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35139333

RESUMO

Loss-of-function mutations in the Wnt co-receptor, low-density lipoprotein receptor-related protein 5 (LRP5), result in familial exudative vitreoretinopathy (FEVR), osteoporosis-pseudoglioma syndrome (OPPG), and Norrie disease. CRISPR/Cas9 gene editing was used to produce rat strains deficient in Lrp5. The purpose of this study was to validate this rat model for studies of hypovascular, exudative retinopathies. The retinal vasculature of wildtype and Lrp5 knockout rats was stained with Giffonia simplifolia isolectin B4 and imaged by fluorescence microscopy. Effects on retinal structure were investigated by histology. The integrity of the blood-retina barrier was analyzed by measurement of permeability to Evans blue dye and staining for claudin-5. Retinas were imaged by fundus photography and SD-OCT, and electroretinograms were recorded. Lrp5 gene deletion led to sparse superficial retinal capillaries and loss of the deep and intermediate plexuses. Autofluorescent exudates were observed and are correlated with increased Evans blue permeability and absence of claudin-5 expression in superficial vessels. OCT images show pathology similar to OCT of humans with FEVR, and retinal thickness is reduced by 50% compared to wild-type rats. Histology and OCT reveal that photoreceptor and outer plexiform layers are absent. The retina failed to demonstrate an ERG response. CRISPR/Cas9 gene-editing produced a predictable rat Lrp5 knockout model with extensive defects in the retinal vascular and neural structure and function. This rat model should be useful for studies of exudative retinal vascular diseases involving the Wnt and norrin pathways.


Assuntos
Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Retina , Animais , Claudina-5/biossíntese , Claudina-5/genética , Azul Evans/farmacologia , Vitreorretinopatias Exsudativas Familiares/genética , Vitreorretinopatias Exsudativas Familiares/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Mutação , Ratos , Retina/metabolismo , Relação Estrutura-Atividade
9.
EMBO Rep ; 21(9): e50103, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32767654

RESUMO

Controlled cell growth and proliferation are essential for tissue homeostasis and development. Wnt and Hippo signaling are well known as positive and negative regulators of cell proliferation, respectively. The regulation of Hippo signaling by the Wnt pathway has been shown, but how and which components of Wnt signaling are involved in the activation of Hippo signaling during nutrient starvation are unknown. Here, we report that a reduction in the level of low-density lipoprotein receptor-related protein 6 (LRP6) during nutrient starvation induces phosphorylation and cytoplasmic localization of YAP, inhibiting YAP-dependent transcription. Phosphorylation of YAP via loss of LRP6 is mediated by large tumor suppressor kinases 1/2 (LATS1/2) and Merlin. We found that O-GlcNAcylation of LRP6 was reduced, and the overall amount of LRP6 was decreased via endocytosis-mediated lysosomal degradation during nutrient starvation. Merlin binds to LRP6; when LRP6 is less O-GlcNAcylated, Merlin dissociates from it and becomes capable of interacting with LATS1 to induce phosphorylation of YAP. Our data suggest that LRP6 has unexpected roles as a nutrient sensor and Hippo signaling regulator.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proliferação de Células , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Nutrientes , Fosforilação
10.
Genes Dev ; 27(21): 2305-19, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24186977

RESUMO

Norrin is a cysteine-rich growth factor that is required for angiogenesis in the eye, ear, brain, and female reproductive organs. It functions as an atypical Wnt ligand by specifically binding to the Frizzled 4 (Fz4) receptor. Here we report the crystal structure of Norrin, which reveals a unique dimeric structure with each monomer adopting a conserved cystine knot fold. Functional studies demonstrate that the novel Norrin dimer interface is required for Fz4 activation. Furthermore, we demonstrate that Norrin contains separate binding sites for Fz4 and for the Wnt ligand coreceptor Lrp5 (low-density lipoprotein-related protein 5) or Lrp6. Instead of inducing Fz4 dimerization, Norrin induces the formation of a ternary complex with Fz4 and Lrp5/6 by binding to their respective extracellular domains. These results provide crucial insights into the assembly and activation of the Norrin-Fz4-Lrp5/6 signaling complex.


Assuntos
Proteínas do Olho/química , Proteínas do Olho/metabolismo , Receptores Frizzled/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Animais , Sítios de Ligação , Células COS , Cristalografia por Raios X , Dimerização , Proteínas do Olho/genética , Receptores Frizzled/química , Células HEK293 , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Tetraspaninas/metabolismo , Fator de Crescimento Transformador beta/química , beta Catenina/metabolismo
11.
J Cell Physiol ; 235(10): 6673-6683, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31985040

RESUMO

The activation of the Wnt/ß-catenin signaling pathway is critical for skeletal development but surprisingly little is known about the requirements for the specific frizzled (Fzd) receptors that recognize Wnt ligands. To define the contributions of individual Fzd proteins to osteoblast function, we profiled the expression of all 10 mammalian receptors during calvarial osteoblast differentiation. Expression of Fzd4 was highly upregulated during in vitro differentiation and therefore targeted for further study. Mice lacking Fzd4 in mature osteoblasts had normal cortical bone structure but reduced cortical tissue mineral density and also exhibited an impairment in the femoral trabecular bone acquisition that was secondary to a defect in the mineralization process. Consistent with this observation, matrix mineralization, markers of osteoblastic differentiation, and the ability of Wnt3a to stimulate the accumulation of ß-catenin were reduced in cultures of calvarial osteoblasts deficient for Fzd4. Interestingly, Fzd4-deficient osteoblasts exhibited an increase in the expression of Fzd8 both in vitro and in vivo, which suggests that the two receptors may exhibit overlapping functions. Indeed, ablating a single Fzd8 allele in osteoblast-specific Fzd4 mutants produced a more severe effect on bone acquisition. Taken together, our data indicate that Fzd4 is required for normal bone development and mineralization despite compensation from Fzd8.


Assuntos
Receptores Frizzled/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Diferenciação Celular/fisiologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteogênese/fisiologia , Regulação para Cima/fisiologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia
12.
Calcif Tissue Int ; 106(3): 283-293, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31745588

RESUMO

Sex hormone deprivation commonly occurs following menopause in women or after androgen-depletion during prostate cancer therapy in men, resulting in rapid bone turnover and loss of bone mass. There is a need to identify novel therapies to improve bone mass in these conditions. Previously, we identified age- and sex-dependent effects on bone mass in mice with deletion of the gene encoding the ß-galactoside binding lectin, galectin-3 (Lgals3-KO). Due to the influence of sex on the phenotype, we tested the role of sex hormones, estrogen (ß-estradiol; E2), and androgen (5α-dihydroxytestosterone; DHT) in Lgals3-KO mice. To address this, we subjected male and female wild-type and Lgals3-KO mice to gonadectomy ± E2 or DHT rescue and compared differential responses in bone mass and bone formation. Following gonadectomy, male and female Lgals3-KO mice had greater cortical bone expansion (increased total area; T.Ar) and reduced loss of bone area (B.Ar). While T.Ar and B.Ar were increased in response to DHT in wild-type mice, DHT did not alter these parameters in Lgals3-KO mice. E2 rescue more strongly increased B.Ar in Lgals3-KO compared to wild-type female mice due to a failure of E2 to repress the increase in T.Ar following gonadectomy. Lgals3-KO mice had more osteoblasts relative to bone surface when compared to wild-type animals in sham, gonadectomy, and E2 rescue groups. DHT suppressed this increase. This study revealed a mechanism for the sex-dependency of the Lgals3-KO aging bone phenotype and supports targeting galectin-3 to protect against bone loss associated with decreased sex hormone production.


Assuntos
Osso Cortical , Galectina 3/genética , Osteoporose/etiologia , Androgênios/farmacologia , Animais , Composição Corporal , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/efeitos dos fármacos , Castração , Osso Cortical/diagnóstico por imagem , Osso Cortical/efeitos dos fármacos , Di-Hidrotestosterona/farmacologia , Estrogênios/farmacologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Osteoporose/diagnóstico por imagem , Osteoporose/genética
13.
J Biol Chem ; 293(24): 9542-9543, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907733

RESUMO

Alterations in the SQSTM1 gene are a putative cause of Paget's disease of bone, yet results are conflicting about how these mutations impact osteoclasts, the cell type believed to be the main pathological contributor. In this issue of JBC, Zach et al. provide important new evidence that the protein encoded by SQSTM1, p62, negatively regulates osteoclastogenesis and demonstrate that aged p62-deficient mice develop bone phenotypes similar to those of Paget's disease. These findings help to clarify the role of this important protein and present new opportunities to interrogate bone biology.


Assuntos
Osteíte Deformante/genética , Osteoclastos/patologia , Proteína Sequestossoma-1/genética , Animais , Diferenciação Celular , Deleção de Genes , Humanos , Camundongos , Mutação , Osteíte Deformante/patologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Fenótipo
14.
Hum Mol Genet ; 26(15): 2949-2960, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28486600

RESUMO

Ciliopathies form a group of inherited disorders sharing several clinical manifestations because of abnormal cilia formation or function, and few treatments have been successful against these disorders. Here, we report a mouse model with mutated Sclt1 gene, which encodes a centriole distal appendage protein important for ciliogenesis. Sodium channel and clathrin linker 1 (SCLT1) mutations were associated with the oral-facial-digital syndrome (OFD), an autosomal recessive ciliopathy. The Sclt1-/- mice exhibit typical ciliopathy phenotypes, including cystic kidney, cleft palate and polydactyly. Sclt1-loss decreases the number of cilia in kidney; increases proliferation and apoptosis of renal tubule epithelial cells; elevates protein kinase A, extracellular signal-regulated kinases, SMAD and signal transducer and activator of transcription 3 (STAT3) pathways; and enhances pro-inflammation and pro-fibrosis pathways with disease progression. Embryonic kidney cyst formation of Sclt1-/- mice was effectively reduced by an anti-STAT3 treatment using pyrimethamine. Overall, we reported a new mouse model for the OFD; and our data suggest that STAT3 inhibition may be a promising treatment for SCLT1-associated cystic kidney.


Assuntos
Fator de Transcrição STAT3/metabolismo , Canais de Sódio/metabolismo , Animais , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Cistos/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Rim/metabolismo , Doenças Renais Císticas/etiologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Transgênicos , Modelos Animais , Mutação , Fenótipo , Fator de Transcrição STAT3/genética , Transdução de Sinais , Canais de Sódio/genética
16.
Development ; 141(11): 2206-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24821987

RESUMO

Wnt/ß-catenin signaling supports intestinal homeostasis by regulating proliferation in the crypt. Multiple Wnts are expressed in Paneth cells as well as other intestinal epithelial and stromal cells. Ex vivo, Wnts secreted by Paneth cells can support intestinal stem cells when Wnt signaling is enhanced with supplemental R-Spondin 1 (RSPO1). However, in vivo, the source of Wnts in the stem cell niche is less clear. Genetic ablation of Porcn, an endoplasmic reticulum resident O-acyltransferase that is essential for the secretion and activity of all vertebrate Wnts, confirmed the role of intestinal epithelial Wnts in ex vivo culture. Unexpectedly, mice lacking epithelial Wnt activity (Porcn(Del)/Villin-Cre mice) had normal intestinal proliferation and differentiation, as well as successful regeneration after radiation injury, indicating that epithelial Wnts are dispensable for these processes. Consistent with a key role for stroma in the crypt niche, intestinal stromal cells endogenously expressing Wnts and Rspo3 support the growth of Porcn(Del) organoids ex vivo without RSPO1 supplementation. Conversely, increasing pharmacologic PORCN inhibition, affecting both stroma and epithelium, reduced Lgr5 intestinal stem cells, inhibited recovery from radiation injury, and at the highest dose fully blocked intestinal proliferation. We conclude that epithelial Wnts are dispensable and that stromal production of Wnts can fully support normal murine intestinal homeostasis.


Assuntos
Epitélio/metabolismo , Proteínas de Membrana/genética , Nicho de Células-Tronco , Células Estromais/citologia , Proteínas Wnt/metabolismo , Aciltransferases , Animais , Apoptose , Proliferação de Células , Retículo Endoplasmático/metabolismo , Células Epiteliais/citologia , Fibroblastos/metabolismo , Deleção de Genes , Células HEK293 , Homeostase , Humanos , Intestinos/citologia , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Celulas de Paneth/citologia , Transdução de Sinais , Células-Tronco/citologia , Trombospondinas/metabolismo
17.
Circ Res ; 117(2): 142-56, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26034040

RESUMO

RATIONALE: Wnt signaling regulates key aspects of diabetic vascular disease. OBJECTIVE: We generated SM22-Cre;LRP6(fl/fl);LDLR(-/-) mice to determine contributions of Wnt coreceptor low-density lipoprotein receptor-related protein 6 (LRP6) in the vascular smooth muscle lineage of male low-density lipoprotein receptor-null mice, a background susceptible to diet (high-fat diet)-induced diabetic arteriosclerosis. METHODS AND RESULTS: As compared with LRP6(fl/fl);LDLR(-/-) controls, SM22-Cre;LRP6(fl/fl);LDLR(-/-) (LRP6-VKO) siblings exhibited increased aortic calcification on high-fat diet without changes in fasting glucose, lipids, or body composition. Pulse wave velocity (index of arterial stiffness) was also increased. Vascular calcification paralleled enhanced aortic osteochondrogenic programs and circulating osteopontin (OPN), a matricellular regulator of arteriosclerosis. Survey of ligands and Frizzled (Fzd) receptor profiles in LRP6-VKO revealed upregulation of canonical and noncanonical Wnts alongside Fzd10. Fzd10 stimulated noncanonical signaling and OPN promoter activity via an upstream stimulatory factor (USF)-activated cognate inhibited by LRP6. RNA interference revealed that USF1 but not USF2 supports OPN expression in LRP6-VKO vascular smooth muscle lineage, and immunoprecipitation confirmed increased USF1 association with OPN chromatin. ML141, an antagonist of cdc42/Rac1 noncanonical signaling, inhibited USF1 activation, osteochondrogenic programs, alkaline phosphatase, and vascular smooth muscle lineage calcification. Mass spectrometry identified LRP6 binding to protein arginine methyltransferase (PRMT)-1, and nuclear asymmetrical dimethylarginine modification was increased with LRP6-VKO. RNA interference demonstrated that PRMT1 inhibits OPN and TNAP, whereas PRMT4 supports expression. USF1 complexes containing the histone H3 asymmetrically dimethylated on Arg-17 signature of PRMT4 are increased with LRP6-VKO. Jmjd6, a demethylase downregulated with LRP6 deficiency, inhibits OPN and TNAP expression, USF1: histone H3 asymmetrically dimethylated on Arg-17 complex formation, and transactivation. CONCLUSIONS: LRP6 restrains vascular smooth muscle lineage noncanonical signals that promote osteochondrogenic differentiation, mediated in part via USF1- and arginine methylation-dependent relays.


Assuntos
Arteriosclerose/prevenção & controle , Calcinose/prevenção & controle , Diabetes Mellitus Experimental/complicações , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Receptores de LDL/deficiência , Via de Sinalização Wnt , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Arteriosclerose/etiologia , Arteriosclerose/metabolismo , Calcinose/etiologia , Calcinose/metabolismo , Diabetes Mellitus Experimental/patologia , Gorduras na Dieta/efeitos adversos , Receptores Frizzled/fisiologia , Regulação da Expressão Gênica/fisiologia , Histonas/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/patologia , Osteopontina/biossíntese , Osteopontina/genética , Comunicação Parácrina , Mapeamento de Interação de Proteínas , Proteína-Arginina N-Metiltransferases/metabolismo , Receptores de Superfície Celular , Receptores de LDL/genética , Fatores Estimuladores Upstream/fisiologia , Rigidez Vascular/fisiologia
18.
Nature ; 474(7352): 511-5, 2011 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-21623369

RESUMO

Myeloid cells are a feature of most tissues. Here we show that during development, retinal myeloid cells (RMCs) produce Wnt ligands to regulate blood vessel branching. In the mouse retina, where angiogenesis occurs postnatally, somatic deletion in RMCs of the Wnt ligand transporter Wntless results in increased angiogenesis in the deeper layers. We also show that mutation of Wnt5a and Wnt11 results in increased angiogenesis and that these ligands elicit RMC responses via a non-canonical Wnt pathway. Using cultured myeloid-like cells and RMC somatic deletion of Flt1, we show that an effector of Wnt-dependent suppression of angiogenesis by RMCs is Flt1, a naturally occurring inhibitor of vascular endothelial growth factor (VEGF). These findings indicate that resident myeloid cells can use a non-canonical, Wnt-Flt1 pathway to suppress angiogenic branching.


Assuntos
Células Mieloides/metabolismo , Neovascularização Fisiológica/fisiologia , Retina/citologia , Transdução de Sinais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Wnt/metabolismo , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Células Endoteliais/metabolismo , Fibroblastos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Ligantes , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Receptores Acoplados a Proteínas G , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/deficiência , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas Wnt/deficiência , Proteínas Wnt/genética , Proteína Wnt-5a
19.
Curr Osteoporos Rep ; 15(4): 239-246, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28647886

RESUMO

PURPOSE OF REVIEW: Wnt signaling plays a central role in development and homeostasis, and its dysregulation is a common event in many types of human cancer. Here we explore in detail the contributions of Wnt signaling to the initiation and maintenance of three types of saroma: Ewing sarcoma, osteosarcoma, and malignant peripheral nerve sheath tumors. This review provides an overview of the Wnt signaling pathway and explores in detail the current knowledge about its role in the initiation or maintenance of three tumor types: Ewing sarcoma, osteosarcoma, and malignant peripheral nerve sheath tumors. RECENT FINDINGS: Recent work has assessed the role(s) of Wnt signaling within these cell types. This review provides an overview of the mechanistic insights that have been gained from a number of recent studies to set the foundation for potential therapeutic applications. Wnt signaling has emerged as a potentially critical pathway in maintaining the growth of these types of tumors. Given the fact that many new inhibitors of the pathway have recently or will soon enter Phase 1 clinical trials, it is likely that assessment of their activity in these tumor types will occur in human patients.


Assuntos
Neoplasias Ósseas/metabolismo , Neurilemoma/metabolismo , Osteossarcoma/metabolismo , Sarcoma de Ewing/metabolismo , Via de Sinalização Wnt , Humanos , Neurofibromatose 1/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(7): 2590-5, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550287

RESUMO

A deficiency of mitogen-inducible gene-6 (Mig-6) in mice leads to the development of an early-onset, osteoarthritis (OA)-like disorder in multiple synovial joints, underlying its importance in maintaining joint homeostasis. Here we determined what joint tissues Mig-6 is expressed in and what role chondrocytes play in the Mig-6-deficient OA-like disorder. A Mig-6/lacZ reporter mouse strain expressing ß-galactosidase under the control of the Mig-6 gene promoter was generated to determine Mig-6 expression in joint tissues. By ß-galactosidase staining, we demonstrated that Mig-6 was uniquely expressed in the cells across the entire surface of the synovial joint cavity, including chondrocytes in the superficial zone of articular cartilage and in the meniscus, as well as synovial lining cells. By crossing Mig-6-floxed mice to Col2a1-Cre transgenic mice, to generate cartilage-specific deletion of Mig-6, we demonstrated that deficiency of Mig-6 in the chondrocytes results in a joint phenotype that only partially recapitulates the OA-like disorder of the Mig-6-deficient mice: Ubiquitous deletion of Mig-6 led to the OA-like disorder in multiple joints, whereas cartilage-specific deletion affected the knees but rarely other joints. Furthermore, chondrocytes with Mig-6 deficiency showed excessive proliferative activities along with enhanced EGF receptor signaling in the articular cartilage and in the abnormally formed osteophytes. Our findings provide insight into the crucial requirement for Mig-6 in maintaining joint homeostasis and in regulating chondrocyte activities in the synovial joints. Our data also suggest that other cell types are required for fully developing the Mig-6-deficient OA-like disorder.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Osteoartrite/genética , Animais , Proliferação de Células , Vetores Genéticos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Osteoartrite/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , beta-Galactosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA