Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Eukaryot Microbiol ; 65(6): 773-782, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29603494

RESUMO

Some protists with microsporidian-like cell biological characters, including Mitosporidium, Paramicrosporidium, and Nucleophaga, have SSU rRNA gene sequences that are much less divergent than canonical Microsporidia. We analysed the phylogenetic placement and environmental diversity of microsporidian-like lineages that group near the base of the fungal radiation and show that they group in a clade with metchnikovellids and canonical microsporidians, to the exclusion of the clade including Rozella, in line with what is currently known of their morphology and cell biology. These results show that the phylogenetic scope of Microsporidia has been greatly underestimated. We propose that much of the lineage diversity previously thought to be cryptomycotan/rozellid is actually microsporidian, offering new insights into the evolution of the highly specialized parasitism of canonical Microsporidia. This insight has important implications for our understanding of opisthokont evolution and ecology, and is important for accurate interpretation of environmental diversity. Our analyses also demonstrate that many opisthosporidian (aphelid+rozellid+microsporidian) SSU V4 OTUs from Neotropical forest soils group with the short-branching Microsporidia, consistent with the abundance of their protist and arthropod hosts in soils. This novel diversity of Microsporidia provides a unique opportunity to investigate the evolutionary origins of a highly specialized clade of major animal parasites.


Assuntos
Líquens/classificação , Líquens/genética , Microsporídios/classificação , Microsporídios/genética , Filogenia , Animais , Artrópodes/microbiologia , Biodiversidade , Quitridiomicetos/genética , DNA Fúngico/genética , Ecologia , Eucariotos , Evolução Molecular , Flagelos , Genoma Fúngico , Líquens/citologia , Microsporídios/citologia , Microbiologia do Solo
2.
Mol Biol Evol ; 33(8): 2002-15, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189558

RESUMO

The Microsporidia are a major group of intracellular fungi and important parasites of animals including insects, fish, and immunocompromised humans. Microsporidian genomes have undergone extreme reductive evolution but there are major differences in genome size and structure within the group: some are prokaryote-like in size and organisation (<3 Mb of gene-dense sequence) while others have more typically eukaryotic genome architectures. To gain fine-scale, population-level insight into the evolutionary dynamics of these tiny eukaryotic genomes, we performed the broadest microsporidian population genomic study to date, sequencing geographically isolated strains of Spraguea, a marine microsporidian infecting goosefish worldwide. Our analysis revealed that population structure across the Atlantic Ocean is associated with a conserved difference in ploidy, with American and Canadian isolates sharing an ancestral whole genome duplication that was followed by widespread pseudogenisation and sorting-out of paralogue pairs. While past analyses have suggested de novo gene formation of microsporidian-specific genes, we found evidence for the origin of new genes from noncoding sequence since the divergence of these populations. Some of these genes experience selective constraint, suggesting the evolution of new functions and local host adaptation. Combining our data with published microsporidian genomes, we show that nucleotide composition across the phylum is shaped by a mutational bias favoring A and T nucleotides, which is opposed by an evolutionary force favoring an increase in genomic GC content. This study reveals ongoing dramatic reorganization of genome structure and the evolution of new gene functions in modern microsporidians despite extensive genomic streamlining in their common ancestor.


Assuntos
Microsporídios/genética , Evolução Biológica , Biologia Computacional , Evolução Molecular , Duplicação Gênica , Variação Genética , Genoma Fúngico , Genômica/métodos , Metagenômica , Filogenia , Filogeografia
3.
Environ Microbiol ; 19(5): 2077-2089, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28345194

RESUMO

Glycolysis and oxidative phosphorylation are the fundamental pathways of ATP generation in eukaryotes. Yet in microsporidia, endoparasitic fungi living at the limits of cellular streamlining, oxidative phosphorylation has been lost: energy is obtained directly from the host or, during the dispersive spore stage, via glycolysis. It was therefore surprising when the first sequenced genome from the Enterocytozoonidae - a major family of human and animal-infecting microsporidians - appeared to have lost genes for glycolysis. Here, we sequence and analyse genomes from additional members of this family, shedding new light on their unusual biology. Our survey includes the genome of Enterocytozoon hepatopenaei, a major aquacultural parasite currently causing substantial economic losses in shrimp farming, and Enterospora canceri, a pathogen that lives exclusively inside epithelial cell nuclei of its crab host. Our analysis of gene content across the clade suggests that Ent. canceri's adaptation to intranuclear life is underpinned by the expansion of transporter families. We demonstrate that this entire lineage of pathogens has lost glycolysis and, uniquely amongst eukaryotes, lacks any obvious intrinsic means of generating energy. Our study provides an important resource for the investigation of host-pathogen interactions and reductive evolution in one of the most medically and economically important microsporidian lineages.


Assuntos
Enterocytozoon/metabolismo , Genoma de Protozoário/genética , Glicólise/genética , Hexoquinase/genética , Interações Hospedeiro-Parasita/fisiologia , Fosforilação Oxidativa , Penaeidae/parasitologia , Animais , Sequência de Bases , Evolução Biológica , Enterocytozoon/genética , Enterocytozoon/patogenicidade , Humanos , Microsporidiose/parasitologia , Filogenia , Análise de Sequência de DNA
5.
PLoS Genet ; 9(8): e1003676, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990793

RESUMO

Microsporidia are obligate intracellular parasites with the smallest known eukaryotic genomes. Although they are increasingly recognized as economically and medically important parasites, the molecular basis of microsporidian pathogenicity is almost completely unknown and no genetic manipulation system is currently available. The fish-infecting microsporidian Spraguea lophii shows one of the most striking host cell manipulations known for these parasites, converting host nervous tissue into swollen spore factories known as xenomas. In order to investigate the basis of these interactions between microsporidian and host, we sequenced and analyzed the S. lophii genome. Although, like other microsporidia, S. lophii has lost many of the protein families typical of model eukaryotes, we identified a number of gene family expansions including a family of leucine-rich repeat proteins that may represent pathogenicity factors. Building on our comparative genomic analyses, we exploited the large numbers of spores that can be obtained from xenomas to identify potential effector proteins experimentally. We used complex-mix proteomics to identify proteins released by the parasite upon germination, resulting in the first experimental isolation of putative secreted effector proteins in a microsporidian. Many of these proteins are not related to characterized pathogenicity factors or indeed any other sequences from outside the Microsporidia. However, two of the secreted proteins are members of a family of RICIN B-lectin-like proteins broadly conserved across the phylum. These proteins form syntenic clusters arising from tandem duplications in several microsporidian genomes and may represent a novel family of conserved effector proteins. These computational and experimental analyses establish S. lophii as an attractive model system for understanding the evolution of host-parasite interactions in microsporidia and suggest an important role for lineage-specific innovations and fast evolving proteins in the evolution of the parasitic microsporidian lifecycle.


Assuntos
Apansporoblastina/genética , Evolução Molecular , Interações Hospedeiro-Parasita/genética , Proteínas/genética , Animais , Sequência de Bases , Peixes/genética , Peixes/parasitologia , Genoma , Proteínas de Repetições Ricas em Leucina , Filogenia , Proteômica , Esporos Fúngicos/genética
6.
BMC Genomics ; 16: 983, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26589282

RESUMO

BACKGROUND: Trachipleistophora hominis was isolated from an HIV/AIDS patient and is a member of a highly successful group of obligate intracellular parasites. METHODS: Here we have investigated the evolution of the parasite and the interplay between host and parasite gene expression using transcriptomics of T. hominis-infected rabbit kidney cells. RESULTS: T. hominis has about 30% more genes than small-genome microsporidians. Highly expressed genes include those involved in growth, replication, defence against oxidative stress, and a large fraction of uncharacterised genes. Chaperones are also highly expressed and may buffer the deleterious effects of the large number of non-synonymous mutations observed in essential T. hominis genes. Host expression suggests a general cellular shutdown upon infection, but ATP, amino sugar and nucleotide sugar production appear enhanced, potentially providing the parasite with substrates it cannot make itself. Expression divergence of duplicated genes, including transporters used to acquire host metabolites, demonstrates ongoing functional diversification during microsporidian evolution. We identified overlapping transcription at more than 100 loci in the sparse T. hominis genome, demonstrating that this feature is not caused by genome compaction. The detection of additional transposons of insect origin strongly suggests that the natural host for T. hominis is an insect. CONCLUSIONS: Our results reveal that the evolution of contemporary microsporidian genomes is highly dynamic and innovative. Moreover, highly expressed T. hominis genes of unknown function include a cohort that are shared among all microsporidians, indicating that some strongly conserved features of the biology of these enormously successful parasites remain uncharacterised.


Assuntos
Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Microsporídios/genética , Transcriptoma , Alelos , Animais , Linhagem Celular , Células Cultivadas , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Diploide , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Frequência do Gene , Transferência Genética Horizontal , Genes Fúngicos , Genoma Fúngico , Insetos/genética , Insetos/microbiologia , Estágios do Ciclo de Vida/genética , Microsporídios/crescimento & desenvolvimento , Microsporídios/metabolismo , Família Multigênica , Filogenia , Polimorfismo de Nucleotídeo Único , Splicing de RNA , Coelhos , Reprodutibilidade dos Testes , Transcrição Gênica
8.
PLoS Pathog ; 6(2): e1000761, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20169184

RESUMO

Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of iron-sulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosomes.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Microsporídios/enzimologia , Microsporídios/genética , Sequência de Bases , Western Blotting , Sequência Conservada , Proteínas Fúngicas/química , Proteínas Mitocondriais , Dados de Sequência Molecular , Oxirredutases , Filogenia , Proteínas de Plantas , Reação em Cadeia da Polimerase
9.
Exp Suppl ; 114: 43-69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35543998

RESUMO

The microsporidia are a phylum of intracellular parasites that represent the eukaryotic cell in a state of extreme reduction, with genomes and metabolic capabilities embodying eukaryotic cells in arguably their most streamlined state. Over the past 20 years, microsporidian genomics has become a rapidly expanding field starting with sequencing of the genome of Encephalitozoon cuniculi, one of the first ever sequenced eukaryotes, to the current situation where we have access to the data from over 30 genomes across 20+ genera. Reaching back further in evolutionary history, to the point where microsporidia diverged from other eukaryotic lineages, we now also have genomic data for some of the closest known relatives of the microsporidia such as Rozella allomycis, Metchnikovella spp. and Amphiamblys sp. Data for these organisms allow us to better understand the genomic processes that shaped the emergence of the microsporidia as a group. These intensive genomic efforts have revealed some of the processes that have shaped microsporidian cells and genomes including patterns of genome expansions and contractions through gene gain and loss, whole genome duplication, differential patterns of invasion and purging of transposable elements. All these processes have been shown to occur across short and longer time scales to give rise to a phylum of parasites with dynamic genomes with a diversity of sizes and organisations.


Assuntos
Microsporídios , Sequência de Bases , Evolução Molecular , Genoma Fúngico/genética , Genômica , Microsporídios/genética
10.
Cell Microbiol ; 11(11): 1551-60, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19673893

RESUMO

Microsporidia are intracellular parasites of all major animal lineages and have a described diversity of over 1200 species and an actual diversity that is estimated to be much higher. They are important pathogens of mammals, and are now one of the most common infections among immunocompromised humans. Although related to fungi, microsporidia are atypical in genomic biology, cell structure and infection mechanism. Host cell infection involves the rapid expulsion of a polar tube from a dormant spore to pierce the host cell membrane and allow the direct transfer of the spore contents into the host cell cytoplasm. This intimate relationship between parasite and host is unique. It allows the microsporidia to be highly exploitative of the host cell environment and cause such diverse effects as the induction of hypertrophied cells to harbour prolific spore development, host sex ratio distortion and host cell organelle and microtubule reorganization. Genome sequencing has revealed that microsporidia have achieved this high level of parasite sophistication with radically reduced proteomes and with many typical eukaryotic pathways pared-down to what appear to be minimal functional units. These traits make microsporidia intriguing model systems for understanding the extremes of reductive parasite evolution and host cell manipulation.


Assuntos
Interações Hospedeiro-Parasita , Microsporídios/fisiologia , Microsporídios/patogenicidade , Animais , Humanos , Mamíferos , Modelos Biológicos , Virulência
11.
BMC Genomics ; 9: 200, 2008 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-18445287

RESUMO

BACKGROUND: Microsporidia are well known models of extreme nuclear genome reduction and compaction. The smallest microsporidian genomes have received the most attention, but genomes of different species range in size from 2.3 Mb to 19.5 Mb and the nature of the larger genomes remains unknown. RESULTS: Here we have undertaken genome sequence surveys of two diverse microsporidia, Brachiola algerae and Edhazardia aedis. In both species we find very large intergenic regions, many transposable elements, and a low gene-density, all in contrast to the small, model microsporidian genomes. We also find no recognizable genes that are not also found in other surveyed or sequenced microsporidian genomes. CONCLUSION: Our results demonstrate that microsporidian genome architecture varies greatly between microsporidia. Much of the genome size difference could be accounted for by non-coding material, such as intergenic spaces and retrotransposons, and this suggests that the forces dictating genome size may vary across the phylum.


Assuntos
Apansporoblastina/genética , Evolução Molecular , Genoma Fúngico , Microsporídios/genética , Aedes/microbiologia , Animais , Elementos de DNA Transponíveis , Ordem dos Genes
12.
J Eukaryot Microbiol ; 55(5): 388-92, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19017059

RESUMO

Microsporidia are a large and diverse group of intracellular parasites related to fungi. Much of our understanding of the relationships between microsporidia comes from phylogenies based on a single gene, the small subunit (SSU) rRNA, because only this gene has been sampled from diverse microsporidia. However, SSUrRNA trees are limited in their ability to resolve basal branches and some microsporidian affiliations are inconsistent between different analyses. Protein phylogenies have provided insight into relationships within specific groups of microsporidia, but have rarely been applied to the group as a whole. We have sequenced alpha- and beta-tubulins from microsporidia from three different subgroups, including representatives from what have previously been inferred to be the basal branches, allowing the broadest sampled protein-based phylogenetic analysis to date. Although some relationships remain unresolved, many nodes uniting subgroups are strongly supported and consistent in both individual trees as well as a concatenate of both tubulins. One such relationship that was previously unclear is between Brachiola algerae and Antonospora locustae, and their close association with Encephalitozoon and Nosema. Also, an uncultivated microsporidian that infects cyclopoid copepods is shown to be related to Edhazardia aedis.


Assuntos
Apansporoblastina/genética , Proteínas Fúngicas/genética , Microsporídios/genética , Tubulina (Proteína)/genética , DNA Fúngico/química , DNA Fúngico/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
13.
Environ Microbiol Rep ; 10(3): 328-336, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29578312

RESUMO

The description of diversity is a key imperative in current biological studies and has been revolutionised by the molecular era that allows easy access to microbial diversity not visible to the naked eye. Broadly targeted SSU rRNA gene amplicon studies of diverse environmental habitats continue to reveal new microbial eukaryotic diversity. However, some eukaryotic lineages, particularly parasites, have divergent SSU sequences, and are therefore undersampled or excluded by the methodologies used for SSU studies. One such group is the Microsporidia, which have particularly divergent SSU sequences and are rarely detected in even large-scale amplicon studies. This is a serious omission as microsporidia are diverse and important parasites of humans and other animals of socio-economic importance. Whilst estimates of other microbial diversity are expanding, our knowledge of true microsporidian diversity has remained largely static. In this work, we have combined high throughput sequencing, broad environmental sampling and microsporidian-specific primers to broaden our understanding of the evolutionary diversity of the Microsporidia. Mapping our new sequences onto a tree of known microsporidian diversity we uncover new diversity across all areas of the microsporidian tree and uncover clades dominated by novel sequences, with no close described relatives.


Assuntos
Biodiversidade , Microsporídios/classificação , DNA Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microsporídios/genética , Filogenia , Análise de Sequência de DNA/métodos
14.
Parasit Vectors ; 11(1): 177, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29530076

RESUMO

BACKGROUND: The microsporidian Enterocytozoon hepatopenaei (EHP) is a spore-forming, intracellular parasite that causes an economically debilitating disease (hepatopancreatic microsporidiosis or HPM) in cultured shrimp. HPM is characterized by growth retardation and wide size variation that can result in economic loss for shrimp farmers. Currently, the infection mechanism of EHP in shrimp is poorly understood, especially at the level of host-parasite interaction. In other microsporidia, spore wall proteins have been reported to be involved in host cell recognition. For the host, heparin, a glycosaminoglycan (GAG) molecule found on cell surfaces, has been shown to be recognized by many parasites such as Plasmodium spp. and Leishmania spp. RESULTS: We identified and characterized the first spore wall protein of EHP (EhSWP1). EhSWP1 contains three heparin binding motifs (HBMs) at its N-terminus and a Bin-amphiphysin-Rvs-2 (BAR2) domain at its C-terminus. A phylogenetic analysis revealed that EhSWP1 is similar to an uncharacterized spore wall protein from Enterospora canceri. In a cohabitation bioassay using EHP-infected shrimp with naïve shrimp, the expression of EhSWP1 was detected by RT-PCR in the naïve test shrimp at 20 days after the start of cohabitation. Immunofluorescence analysis confirmed that EhSWP1 was localized in the walls of purified, mature spores. Subcellular localization by an immunoelectron assay revealed that EhSWP1 was distributed in both the endospore and exospore layers. An in vitro binding assay, a competition assay and mutagenesis studies revealed that EhSWP1 is a bona fide heparin binding protein. CONCLUSIONS: Based on our results, we hypothesize that EhSWP1 is an important host-parasite interaction protein involved in tethering spores to host-cell-surface heparin during the process of infection.


Assuntos
Proteínas de Transporte/isolamento & purificação , Enterocytozoon/patogenicidade , Proteínas Fúngicas/isolamento & purificação , Heparina/metabolismo , Penaeidae/microbiologia , Fatores de Virulência/isolamento & purificação , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Parede Celular/química , Enterocytozoon/química , Enterocytozoon/classificação , Enterocytozoon/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Parasita , Microsporidiose/microbiologia , Filogenia , Esporos Fúngicos/química , Virulência/genética , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
PLoS One ; 11(11): e0166320, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832178

RESUMO

Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers.


Assuntos
DNA Fúngico/análise , Enterocytozoon/isolamento & purificação , Microsporidiose/microbiologia , Microsporidiose/veterinária , Penaeidae/microbiologia , Frutos do Mar/microbiologia , Animais , Sequência de Bases , DNA Fúngico/genética , Enterocytozoon/genética , Pesqueiros , Hibridização In Situ , Reação em Cadeia da Polimerase/métodos , Alinhamento de Sequência
16.
Folia Parasitol (Praha) ; 52(1-2): 8-14, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16004359

RESUMO

Microsporidia have been known for some time to possess among the smallest genomes of any eukaryote. There is now a completely sequenced microsporidian genome, as well as several other large-scale sequencing efforts, so the nature of these genomes is becoming apparent. This paper reviews some of the characteristics of microsporidian genomes in general, and some of the recent discoveries made through comparative genomic analyses. In general, microsporidian genomes are both reduced and compacted. Reduction takes place through gene loss, which is understandable in obligate intracellular parasites that rely on their host for many metabolites. Compaction is a more complex process, and is as yet not fully understood. It is clear from genomes surveyed thus far that the remaining genes are tightly packed and that there is little non-coding sequence, resulting in some extraordinary arrangements, including overlapping genes. Compaction also seems to affect certain aspects of genome evolution, like the frequency of rearrangements. The force behind this compaction is not known, and is especially interesting in light of the fact that surveys of genomes that are significantly different in size yield similar complements of protein-coding genes. There are some interesting exceptions, including catalase, photolyase and some mitochondrial proteins, but the rarity of these raises an interesting question as to what accounts for the significant differences seen in the genome sizes among microsporidia.


Assuntos
Variação Genética , Componentes Genômicos/genética , Genoma Fúngico , Microsporídios/genética , Animais , Sequência de Bases , Sequência Conservada/genética , Genômica/métodos
17.
Adv Parasitol ; 54: 9-68, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14711083

RESUMO

A number of parasitic protists and fungi have adopted extremely specialised characteristics of morphology, biochemistry, and molecular biology, sometimes making it difficult to discern their evolutionary origins. One aspect of several parasitic groups that reflects this is their metabolic organelles, mitochondria and plastids. These organelles are derived from endosymbiosis with an alpha-proteobacterium and a cyanobacterium respectively, and are home to a variety of core metabolic processes. As parasites adapted, new demands, or perhaps a relaxation of demands, frequently led to significant changes in these organelles. At the extreme, the organelles are degenerated and transformed beyond recognition, and are referred to as "cryptic". Generally, there is no prior cytological evidence for a cryptic organelle, and its presence is only discovered through phylogenetic analysis of molecular relicts followed by their localisation to organelle-like structures. Since the organelles are derived from eubacteria, the genes for proteins and RNAs associated with them are generally easily recognisable, and since the metabolic activities retained in these organelles are prokaryotic, or at least very unusual, they often serve as an important target for therapeutics. Cryptic mitochondria are now known in several protist and fungal parasites. In some cases (e.g., Trichomonas), well characterised but evolutionarily enigmatic organelles called hydrogenosomes were shown to be derived from mitochondria. In other cases (e.g., Entamoeba and microsporidia), "amitochondriate" parasites have been shown to harbour a previously undetected mitochondrial organelle. Typically, little is known about the functions of these newly discovered organelles, but recent progress in several groups has revealed a number of potential functions. Cryptic plastids have now been found in a small number of parasites that were not previously suspected to have algal ancestors. One recent case is the discovery that helicosporidian parasites are really highly adapted green alga, but the most spectacular case is the discovery of a plastid in the Apicomplexa. Apicomplexa are very well-studied parasites that include the malaria parasite, Plasmodium, so the discovery of a cryptic plastid in Apicomplexa came as quite a surprise. The apicomplexan plastid is now very well characterised and has been shown to function in the biosynthesis of fatty acids, isopentenyl diphosphate and heme, activities also found in photosynthetic plastids.


Assuntos
Eucariotos/fisiologia , Fungos/fisiologia , Organelas/fisiologia , Parasitos/fisiologia , Animais , Filogenia
18.
Methods Mol Biol ; 270: 151-72, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15153626

RESUMO

Many gene-cloning strategies and gene survey often provide partial sequence data. To exploit the information from these partial sequences numerous PCR-based approaches have been developed to clone full-length open reading frames. These approaches can be successful using small quantities of cDNA or genomic DNA as starting material and avoid the need to go through the complex and tedious process of constructing and screening gene libraries. Here we present two of these approaches, called RACE and RAGE, we used to successfully clone partial and full-length ORFs from amitochondriate parasitic microbial eukaryotes. The RACE approach uses cDNA as template for PCR cloning whereas RAGE uses genomic DNA. These two approaches were used to complement each other to provide full-length genes. The amitochondriate microbial eukaryotes we are investigating are of interest from both evolutionary and biomedical perspectives. We have investigated genes of mitochondrial origins in the obligate intracellular parasite called microsporidia. In these organisms spores are the only source of material that can be isolated from host cells and typically yield small amount of mRNA and genomic DNA for cloning. A full-length mitochondrial Hsp70 could be cloned and sequenced and specific antibody raised against a fusion protein. The highly specific antibody allowed us to demonstrate for the first time the presence of mitochondrial-like organelles in microsporidia.


Assuntos
Clonagem Molecular/métodos , Animais , DNA Complementar , Vetores Genéticos , Proteínas de Choque Térmico HSP70/genética , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Trichomonas vaginalis/genética
20.
J Mol Biol ; 375(5): 1249-57, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18078956

RESUMO

The mitochondrion is one of the defining characteristics of eukaryotic cells, and to date, no eukaryotic lineage has been shown to have lost mitochondria entirely. In certain anaerobic or microaerophilic lineages, however, the mitochondrion has become severely reduced that it lacks a genome and no longer synthesizes ATP. One example of such a reduced organelle, called the mitosome, is found in microsporidian parasites. Only a handful of potential mitosomal proteins were found to be encoded in the complete genome of the microsporidian Encephalitozoon cuniculi, and significantly no proteins of the mitochondrial carrier family were identified. These carriers facilitate the transport of solutes across the inner mitochondrial membrane, are a means of communication between the mitochondrion and cytosol, and are abundant in organisms with aerobic mitochondria. Here, we report the characterization of a mitochondrial carrier protein in the microsporidian Antonospora locustae and demonstrate that the protein is heterologously targeted to mitochondria in Saccharomyces cerevisiae. The protein is phylogenetically allied to the NAD(+) transporter of S. cerevisiae, but we show that it has high specificity for ATP and ADP when expressed in Escherichia coli. An ADP/ATP carrier may provide ATP for essential ATP-dependent mitosomal processes such as Hsp70-dependent protein import and export of iron-sulfur clusters to the cytosol.


Assuntos
Proteínas de Membrana Transportadoras/genética , Microsporídios/genética , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Proteínas Mitocondriais/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Microsporídios/metabolismo , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA