Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39269931

RESUMO

OBJECTIVE: The All of Us Evenings with Genetics (EwG) Research Program at Baylor College of Medicine (BCM), funded to engage research scholars to work with the All of Us data, developed a training curriculum for the Researcher Workbench, the platform to access and analyze All of Us data. All of Us EwG developed the curriculum so that it could teach scholars regardless of their skills and background in programming languages and cloud computing. All of Us EwG delivered this curriculum at the first annual All of Us EwG Faculty Summit in May 2022. The curriculum was evaluated both during and after the Faculty Summit so that it could be improved for future training. MATERIALS AND METHODS: Surveys were administered to assess scholars' familiarity with the programming languages and computational tools required to use the Researcher Workbench. The curriculum was developed using backward design and was informed by the survey results, a review of available resources for training users on the Researcher Workbench, and All of Us EwG members' collective experience training students. The curriculum was evaluated using feedback surveys during the Faculty Summit as well as virtual meetings and emails following the Faculty Summit. RESULTS: The evaluation results demonstrated the success of the curriculum and identified areas for improvement. DISCUSSION AND CONCLUSION: The curriculum has been adapted and improved in response to evaluations and in response to changes to the All of Us data and infrastructure to train more researchers through this program and other scholarly programs.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39259934

RESUMO

OBJECTIVE: Educational offerings to fill the bioinformatics knowledge gap are a key component to enhancing access and use of health data from the All of Us Research Program. We developed a Train the Trainer-based, innovative training series including project-based learning, modular on-demand demonstrations, and unstructured tutorial time as a model for educational engagement in the All of Us community. MATERIALS AND METHODS: We highlight our training modules and content, with training survey data informing cycles of development in the creation of a 6-module training series with modular demonstrations. RESULTS: We have conducted 2 public iterations of the Train the Trainer (Tx3) Series based on survey feedback while training over 300 registered researchers to access and analyze data on the All of Us Researcher Workbench. DISCUSSION AND CONCLUSION: Future directions of the Tx3 Series include enhanced focus on project-based learning and learner requests for modularity and asynchronous materials access.

3.
Cancer Prev Res (Phila) ; 16(2): 65-73, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36343340

RESUMO

Antiestrogen medication is the only chemoprevention currently available for women at a high risk of developing breast cancer; however, antiestrogen therapy requires years to achieve efficacy and has adverse side effects. Therefore, it is important to develop an efficacious chemoprevention strategy that requires only a short course of treatment. PIK3CA is commonly activated in breast atypical hyperplasia, the known precancerous precursor of breast cancer. Targeting PI3K signaling in these precancerous lesions may offer a new strategy for chemoprevention. Here, we first established a mouse model that mimics the progression from precancerous lesions to breast cancer. Next, we demonstrated that a short-course prophylactic treatment with the clinically approved PI3K inhibitor alpelisib slowed early lesion expansion and prevented cancer formation in this model. Furthermore, we showed that alpelisib suppressed ex vivo expansion of patient-derived atypical hyperplasia. Together, these data indicate that the progression of precancerous breast lesions heavily depends on the PI3K signaling, and that prophylactic targeting of PI3K activity can prevent breast cancer. PREVENTION RELEVANCE: PI3K protein is abnormally high in breast precancerous lesions. This preclinical study demonstrates that the FDA-approved anti-PI3K inhibitor alpelisib can prevent breast cancer and thus warrant future clinical trials in high-risk women.


Assuntos
Lesões Pré-Cancerosas , Tiazóis , Animais , Camundongos , Feminino , Hiperplasia/tratamento farmacológico , Tiazóis/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase , Lesões Pré-Cancerosas/tratamento farmacológico , Moduladores de Receptor Estrogênico , Classe I de Fosfatidilinositol 3-Quinases
4.
Am J Respir Cell Mol Biol ; 46(2): 173-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21852688

RESUMO

Malignant pleural mesothelioma (MPM) is a rare cancer that is refractory to current treatments. It is characterized by a robust deposition of transitional fibrin that is in part promoted by tumor cells. MPM cells express tissue factor (TF) and the tissue factor pathway inhibitor (TFPI), but their contribution to the pathogenesis of MPM has been unclear. We found that REN MPM cells fail to express TFPI. Based on the tumor growth-promoting properties of TF, we hypothesized that the stable transfection of TFPI into REN MPM cells would decrease their aggressiveness. We tested our hypothesis using in vitro, in vivo, and ex vivo analyses. TFPI knock-in decreased the proliferation, invasion, and TF activity of REN cells in vitro. REN TFPI knock-in cells, empty vector, and naive control cells were next injected intrapleurally into nude mice. The expression of TFPI significantly decreased tissue invasion, inflammation, and the deposition of fibrin and collagen associated with tumor tissue, pleural effusions, and tumor burden. In ex vivo analyses, REN cells were cultured from harvested tumors. The overexpression of TFPI was maintained in cells propagated from TFPI knock-in tumors, and attenuated the activation of Factor X and the invasiveness of tumor cells. These analyses demonstrate that TFPI reduces the aggressiveness of MPM in vitro and in vivo, and that its effect involves the inhibition of TF procoagulant activity. These observations suggest that the interactions of TF and TFPI represent a novel therapeutic target in the treatment of MPM.


Assuntos
Lipoproteínas/fisiologia , Mesotelioma/prevenção & controle , Neoplasias Pleurais/prevenção & controle , Animais , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Mesotelioma/patologia , Camundongos , Camundongos Nus , Neoplasias Pleurais/patologia
5.
Am J Respir Cell Mol Biol ; 46(2): 196-206, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22298529

RESUMO

The low-density lipoprotein receptor-related protein 1 (LRP-1) binds and can internalize a diverse group of ligands, including members of the fibrinolytic pathway, urokinase plasminogen activator (uPA), and its receptor, uPAR. In this study, we characterized the role of LRP-1 in uPAR processing, collagen synthesis, proteolysis, and migration in pleural mesothelial cells (PMCs). When PMCs were treated with the proinflammatory cytokines TNF-α and IL-1ß, LRP-1 significantly decreased at the mRNA and protein levels (70 and 90%, respectively; P < 0.05). Consequently, uPA-mediated uPAR internalization was reduced by 80% in the presence of TNF-α or IL-1ß (P < 0.05). In parallel studies, LRP-1 neutralization with receptor-associated protein (RAP) significantly reduced uPA-dependent uPAR internalization and increased uPAR stability in PMCs. LRP-1-deficient cells demonstrated increased uPAR t(1/2) versus LRP-1-expressing PMCs. uPA enzymatic activity was also increased in LRP-1-deficient and neutralized cells, and RAP potentiated uPA-dependent migration in PMCs. Collagen expression in PMCs was also induced by uPA, and the effect was potentiated in RAP-treated cells. These studies indicate that TNF-α and IL-1ß regulate LRP-1 in PMCs and that LRP-1 thereby contributes to a range of pathophysiologically relevant responses of these cells.


Assuntos
Colágeno Tipo I/metabolismo , Epitélio/metabolismo , Pleura/metabolismo , Receptores de Lipoproteínas/metabolismo , Linhagem Celular , Humanos , Pleura/citologia , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA