Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 137(6): 2167-70, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25633304

RESUMO

Supramolecular arrangement of conjugated molecules has crucial influence on their material properties. For fullerenes and metallofullerenes, tight and ordered packing is beneficial for intermolecular charge transport and energy transfer, but it is tricky to achieve, especially for functionalized cages due to the often extensive solvation and steric effects of functional groups. In this study, we use an amphiphilic fullerene derivative soluble in methanol to form co-assemblies with insoluble fullerene derivatives, pristine fullerene, and metallofullerene via strong π-π interactions. These mixtures are processable in methanol and show fullerene-templated crystalline structures in spin-cast films. Devices are successfully fabricated on a field-effect transistor platform with this approach, and all co-assemblies show metallic-like conductive properties with significantly enhanced conductivity compared to the pure amphiphilic fullerene derivative.

2.
Small ; 11(26): 3088-96, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25760403

RESUMO

Organo-lead halide perovskite photovoltaics have developed faster than our understanding of the material itself. Using the vast body of work on perovskite processing created in just the past few years, it is possible to create a better picture of this material's complex phase-transformation behavior. This concept paper summarizes and correlates the current understanding of structural intermediates, kinetic controls, and structure-property relationships of organo-lead iodide perovskites. To this end, a new way of graphically relating information is developed, allowing the simultaneous mapping of schematic kinetic relationships between all currently prevailing perovskite deposition and growth techniques.

3.
Ann Biomed Eng ; 50(12): 1954-1963, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35864367

RESUMO

Cartilage contact pressures are major factors in osteoarthritis etiology and are commonly estimated using finite element analysis (FEA). FEA models often include subject-specific joint geometry, but lack subject-specific joint kinematics and muscle forces. Musculoskeletal models use subject-specific kinematics and muscle forces but often lack methods for estimating cartilage contact pressures. Our objective was to adapt an elastic foundation (EF) contact model within OpenSim software to predict hip cartilage contact pressures and compare results to validated FEA models. EF and FEA models were built for five subjects. In the EF models, kinematics and muscle forces were applied and pressure was calculated as a function of cartilage overlap depth. Cartilage material properties were perturbed to find the best match to pressures from FEA. EF models with elastic modulus = 15 MPa and Poisson's ratio = 0.475 yielded results most comparable to FEA, with peak pressure differences of 4.34 ± 1.98 MPa (% difference = 39.96 ± 24.64) and contact area differences of 3.73 ± 2.92% (% difference = 13.4 ± 11.3). Peak pressure location matched between FEA and EF for 3 of 5 subjects, thus we do not recommend this model if the location of peak contact pressure is critically important to the research question. Contact area magnitudes and patterns matched reasonably between FEA and EF, suggesting that this model may be useful for questions related to those variables, especially if researchers desire inclusion of subject-specific geometry, kinematics, muscle forces, and dynamic motion in a computationally efficient framework.


Assuntos
Osteoartrite , Caminhada , Humanos , Caminhada/fisiologia , Cartilagem , Fenômenos Biomecânicos , Pressão , Análise de Elementos Finitos , Marcha/fisiologia
4.
Adv Mater ; 29(15)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28169471

RESUMO

Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic-inorganic hybrid perovskite solar cells (PVSCs), critical concerns pertaining to the instability and toxicity still remain that may potentially hinder their commercialization. In this study, a new chemical approach using environmentally friendly strontium chloride (SrCl2 ) as a precursor for perovskite preparation is demonstrated to result in enhanced device performance and stability of the derived hole-conductor-free printable mesoscopic PVSCs. The CH3 NH3 PbI3 perovskite is chemically modified by introducing SrCl2 in the precursor solution. The results from structural, elemental, and morphological analyses show that the incorporation of SrCl2 affords the formation of CH3 NH3 PbI3 (SrCl2 )x perovskites endowed with lower defect concentration and better pore filling in the derived mesoscopic PVSCs. The optimized compositional CH3 NH3 PbI3 (SrCl2 )0.1 perovskite can substantially enhance the photovoltaic performance of the derived hole-conductor-free device to 15.9%, outperforming the value (13.0%) of the pristine CH3 NH3 PbI3 device. More importantly, the stability of the device in ambient air under illumination is also improved.

5.
J Phys Chem Lett ; 7(6): 995-1003, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26927828

RESUMO

In this study, reverse bias (RB)-induced abnormal hysteresis is investigated in perovskite solar cells (PVSCs) with nickel oxide (NiOx)/methylammonium lead iodide (CH3NH3PbI3) interfaces. Through comprehensive current-voltage (I-V) characterization and bias-dependent external quantum efficiency (EQE) measurements, we demonstrate that this phenomenon is caused by the interfacial ion accumulation intrinsic to CH3NH3PbI3. Subsequently, via systematic analysis we discover that the abnormal I-V behavior is remarkably similar to tunnel diode I-V characteristics and is due to the formation of a transient tunnel junction at NiOx/CH3NH3PbI3 interfaces under RB. The detailed analysis navigating the complexities of I-V behavior in CH3NH3PbI3-based solar cells provided here ultimately illuminates possibilities in modulating ion motion and hysteresis via interfacial engineering in PVSCs. Furthermore, this work shows that RB can alter how CH3NH3PbI3 contributes to the functional nature of devices and provides the first steps toward approaching functional perovskite interfaces in new ways for metrology and analysis of complex transient processes.

6.
J Phys Chem Lett ; 7(5): 811-9, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26866466

RESUMO

Organic-inorganic hybrid perovskite photovoltaics (PSCs) are poised to push toward technology translation, but significant challenges complicating commercialization remain. Though J-V hysteresis and ecotoxicity are uniquely imposing issues at scale, CH3NH3PbI3 degradation is by far the sharpest limitation to the technology's potential market contribution. Herein, we offer a perspective on the practical market potential of PSCs, the nature of fundamental PSC challenges at scale, and an outline of prospective solutions for achieving module scale PSC production tailored to intrinsic advantages of CH3NH3PbI3. Although integrating PSCs into the energy grid is complicated by CH3NH3PbI3 degradation, the ability of PSCs to contribute to consumer electronics and other niche markets like those organic photovoltaics have sought footing in rests primarily upon the technology's price point. Thus, slot die, roll-to-roll processing has the greatest potential to enable PSC scale-up, and herein, we present a perspective on the research necessary to realize fully printable PSCs at scale.


Assuntos
Compostos de Cálcio/química , Fontes de Energia Elétrica , Óxidos/química , Titânio/química , Estudos Prospectivos , Termodinâmica
7.
Nanoscale ; 7(41): 17343-9, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26426581

RESUMO

In this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We reveal that PC61BM can serve as a surface modifier of FPI-PEIE to simultaneously facilitate the crystallization of perovskite and the charge extraction at FPI-PEIE/CH3NH3PbI3 interface. Furthermore, the FPI-PEIE can also tune the work function of ITO and dope PC61BM to promote the efficient electron transport between ITO and PC61BM. Based on the advantages of room-temperature processability and decent electrical property of FPI-PEIE/PC61BM EEL, a high-performance flexible PVSC with a PCE ∼10% is eventually demonstrated. This study shows the potential of low-temperature processed organic EEL to replace transition metal oxide-based interlayers for highly printing compatible PVSCs with high-performance.

8.
Adv Mater ; 27(4): 695-701, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25449020

RESUMO

An effective approach to significantly increase the electrical conductivity of a NiOx hole-transporting layer (HTL) to achieve high-efficiency planar heterojunction perovskite solar cells is demonstrated. Perovskite solar cells based on using Cu-doped NiOx HTL show a remarkably improved power conversion efficiency up to 15.40% due to the improved electrical conductivity and enhanced perovskite film quality. General applicability of Cu-doped NiOx to larger bandgap perovskites is also demonstrated in this study.

9.
Nanoscale ; 7(25): 10936-9, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26058494

RESUMO

A blade-coating process was employed to fabricate bulk-heterojunction (BHJ) polymer solar cells based on a ladder-type polymer (PIDT-PhanQ) with low crystallinity. Compared to the devices processed by a conventional spin-coating method, an intriguing morphology with enhanced phase-separation and increased crystallinity was achieved. As a result, power conversion efficiency up to 7.25% could be achieved from the blade-coated PIDT-PhanQ:PC71BM BHJ film, surpassing the original value obtained by spin-coating (6.29%). This improved photovoltaic performance is attributed to the improved charge carrier mobilities, which correlates well with the increased crystallinity and the organized network of the donor-acceptor phases that produce efficient charge-transporting pathways.

10.
ACS Nano ; 8(10): 10640-54, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25299303

RESUMO

A comprehensive morphological study was used to elucidate chloride's role in CH(3)NH(3)PbI(3-x)Cl(x) film evolution on a conducting polymer, PEDOT:PSS. Complex ion equilibria and aggregation in solution, as well as the role they play in nucleation, are found to ultimately be responsible for the unique morphological diversity observed in perovskite films grown in the presence of the chloride ion. An intermediate phase that is generated upon deposition and initial annealing templates continued self-assembly in the case of CH(3)NH(3)PbI(3-x)Cl(x). In the absence of chloride, the film growth of CH(3)NH(3)PbI(3) is directed by substrate interfacial energy. By employing the through-plane TEM analysis, we gain detailed insight into the unique crystallographic textures, grain structures, and elemental distributions across the breadth of films grown from precursor solutions with different chemistries. The lattice coherence seen in morphologies generated under the influence of chloride provides a physical rational for the enhancement in carrier diffusion length and lifetime.

11.
Adv Mater ; 26(37): 6454-60, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25123496

RESUMO

A simple, low temperature solution process for Pb/Sn binary-metal perovskite planar-heterojunction solar cells is demonstrated. Sn inclusion substantially influences the band-gap, crystallization kinetics, and thin-film formation leading to a broadened light absorption and enhanced film coverage on ITO/PEDOT:PSS. As a result, the optimized device shows a PCE exceeding 10%, which is the best result for binary-metal perovskite solar cells so far.

12.
Adv Mater ; 26(32): 5708-14, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-24942332

RESUMO

High-performance non-fullerene OSCs with PCEs of up to ca. 6.0% are demonstrated based on PBDTT-F-TT polymer and a molecular di-PBI acceptor through comprehensive molecular, interfacial, and device engineering. Impressive PCEs can also be retained in devices with relatively thick BHJ layer and processed through non-halogenated solvents, indicating these high-performance non-fullerene OSCs are promising for large-area printing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA