Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Infect Immun ; 88(6)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32152197

RESUMO

Chagas disease is a major public health issue, affecting ∼10 million people worldwide. Transmitted by a protozoan named Trypanosoma cruzi, this infection triggers a chronic inflammatory process that can lead to cardiomyopathy (Chagas disease). Resolvin D1 (RvD1) is a novel proresolution lipid mediator whose effects on inflammatory diseases dampens pathological inflammatory responses and can restore tissue homeostasis. Current therapies are not effective in altering the outcome of T. cruzi infection, and as RvD1 has been evaluated as a therapeutic agent in various inflammatory diseases, we examined if exogenous RvD1 could modulate the pathogenesis of Chagas disease in a murine model. CD-1 mice infected with the T. cruzi Brazil strain were treated with RvD1. Mice were administered 3 µg/kg of body weight RvD1 intraperitoneally on days 5, 10, and 15 to examine the effect of RvD1 on acute disease or administered the same dose on days 60, 65, and 70 to examine its effects on chronic infection. RvD1 therapy increased the survival rate and controlled parasite replication in mice with acute infection and reduced the levels of interferon gamma and transforming growth factor ß (TGF-ß) in mice with chronic infection. In addition, there was an increase in interleukin-10 levels with RvD1 therapy in both mice with acute infection and mice with chronic infection and a decrease in TGF-ß levels and collagen content in cardiac tissue. Together, these data indicate that RvD1 therapy can dampen the inflammatory response, promote the resolution of T. cruzi infection, and prevent cardiac fibrosis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Doença de Chagas/microbiologia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/mortalidade , Doença de Chagas/patologia , Modelos Animais de Doenças , Ecocardiografia , Fibrose , Coração , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/patologia , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Tamanho do Órgão , Índice de Gravidade de Doença
2.
Infect Immun ; 88(4)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31907197

RESUMO

Chagas disease, caused by Trypanosoma cruzi, is a major public health issue. Limitations in immune responses to natural T. cruzi infection usually result in parasite persistence with significant complications. A safe, effective, and reliable vaccine would reduce the threat of T. cruzi infections; however, no suitable vaccine is currently available due to a lack of understanding of the requirements for induction of fully protective immunity. We established a T. cruzi strain expressing green fluorescent protein (GFP) under the control of dihydrofolate reductase degradation domain (DDD) with a hemagglutinin (HA) tag, GFP-DDDHA, which was induced by trimethoprim-lactate (TMP-lactate), which results in the death of intracellular parasites. This attenuated strain induces very strong protection against reinfection. Using this GFP-DDDHA strain, we investigated the mechanisms underlying the protective immune response in mice. Immunization with this strain led to a response that included high levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), as well as a rapid expansion of effector and memory T cells in the spleen. More CD8+ T cells differentiate to memory cells following GFP-DDDHA infection than after infection with a wild-type (WT) strain. The GFP-DDDHA strain also provides cross-protection against another T. cruzi isolate. IFN-γ is important in mediating the protection, as IFN-γ knockout (KO) mice failed to acquire protection when infected with the GFP-DDDHA strain. Immune cells demonstrated earlier and stronger protective responses in immunized mice after reinfection with T. cruzi than those in naive mice. Adoptive transfers with several types of immune cells or with serum revealed that several branches of the immune system mediated protection. A combination of serum and natural killer cells provided the most effective protection against infection in these transfer experiments.


Assuntos
Doença de Chagas/prevenção & controle , Vacinas Protozoárias/imunologia , Subpopulações de Linfócitos T/imunologia , Trypanosoma cruzi/imunologia , Animais , Doença de Chagas/imunologia , Modelos Animais de Doenças , Imunidade Celular , Fatores Imunológicos/metabolismo , Interferon gama/metabolismo , Camundongos , Vacinas Protozoárias/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
3.
Trends Immunol ; 37(6): 375-385, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27131432

RESUMO

Recent findings have revealed roles for systemic and mucosa-resident memory CD8(+) T cells in the orchestration of innate immune responses critical to host defense upon microbial infection. Here we integrate these findings into the current understanding of the molecular and cellular signals controlling memory CD8(+) T cell reactivation and the mechanisms by which these cells mediate effective protection in vivo. The picture that emerges presents memory CD8(+) T cells as early sensors of danger signals, mediating protective immunity both through licensing of cellular effectors of the innate immune system and via the canonical functions associated with memory T cells. We discuss implications for the development of T cell vaccines and therapies and highlight important areas in need of further investigation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade nas Mucosas , Memória Imunológica , Imunoterapia Adotiva/métodos , Mucosa Intestinal/imunologia , Subpopulações de Linfócitos/imunologia , Vacinas/imunologia , Animais , Linfócitos T CD8-Positivos/transplante , Humanos , Imunoterapia Adotiva/tendências , Subpopulações de Linfócitos/transplante , Receptores de Reconhecimento de Padrão/metabolismo
4.
J Immunol ; 194(7): 3369-80, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25725098

RESUMO

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a diverse family of pattern recognition receptors that are essential mediators of inflammation and host defense in the gastrointestinal system. Recent studies have identified a subgroup of inflammasome forming NLRs that modulate the mucosal immune response during inflammatory bowel disease (IBD) and colitis associated tumorigenesis. To better elucidate the contribution of NLR family members in IBD and cancer, we conducted a retrospective analysis of gene expression metadata from human patients. These data revealed that NLRP1, an inflammasome forming NLR, was significantly dysregulated in IBD and colon cancer. To better characterize the function of NLRP1 in disease pathogenesis, we used Nlrp1b(-/-) mice in colitis and colitis-associated cancer models. In this paper, we report that NLRP1 attenuates gastrointestinal inflammation and tumorigenesis. Nlrp1b(-/-) mice demonstrated significant increases in morbidity, inflammation, and tumorigenesis compared with wild-type animals. Similar to data previously reported for related inflammasome forming NLRs, the increased inflammation and tumor burden was correlated with attenuated levels of IL-1ß and IL-18. Further mechanistic studies using bone marrow reconstitution experiments revealed that the increased disease pathogenesis in the Nlrp1b(-/-) mice was associated with nonhematopoietic-derived cells and suggests that NLRP1 functions in the colon epithelial cell compartment to attenuate tumorigenesis. Taken together, these data identify NLRP1 as an essential mediator of the host immune response during IBD and cancer. These findings are consistent with a model whereby multiple NLR inflammasomes attenuate disease pathobiology through modulating IL-1ß and IL-18 levels in the colon.


Assuntos
Transformação Celular Neoplásica/metabolismo , Colite/complicações , Colite/metabolismo , Neoplasias do Colo/etiologia , Inflamassomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Biópsia , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colite Ulcerativa/complicações , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/mortalidade , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas NLR , Estudos Retrospectivos
5.
Mediators Inflamm ; 2016: 9848263, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27378827

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that is the etiologic agent responsible for toxoplasmosis. Infection with T. gondii results in activation of nucleotide binding domain and leucine rich repeat containing receptors (NLRs). NLR activation leads to inflammasome formation, the activation of caspase-1, and the subsequent cleavage of IL-1ß and IL-18. Recently, a noncanonical inflammasome has been characterized which functions through caspase-11 and appears to augment many biological functions previously considered to be dependent upon the canonical inflammasome. To better elucidate the function of this noncanonical inflammasome in toxoplasmosis, we utilized Asc (-/-) and Casp11 (-/-) mice and infected these animals with T. gondii. Our data indicates that caspase-11 modulates the innate immune response to T. gondii through a mechanism which is distinct from that currently described for the canonical inflammasome. Asc (-/-) mice demonstrated increased disease pathogenesis during the acute phase of T. gondii infection, whereas Casp11 (-/-) mice demonstrated significantly attenuated disease pathogenesis and reduced inflammation. This attenuated host response was associated with reduced local and systemic cytokine production, including diminished IL-1ß. During the chronic phase of infection, caspase-11 deficiency resulted in increased neuroinflammation and tissue cyst burden in the brain. Together, our data suggest that caspase-11 functions to protect the host by enhancing inflammation during the early phase of infection in an effort to minimize disease pathogenesis during later stages of toxoplasmosis.


Assuntos
Caspases/metabolismo , Inflamação/enzimologia , Inflamação/metabolismo , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Animais , Caspases/genética , Caspases Iniciadoras , Células Cultivadas , Feminino , Imunidade Inata/genética , Imunidade Inata/fisiologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Mediators Inflamm ; 2016: 6373506, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199506

RESUMO

Traumatic brain injury (TBI) elicits the immediate production of proinflammatory cytokines which participate in regulating the immune response. While the mechanisms of adaptive immunity in secondary injury are well characterized, the role of the innate response is unclear. Recently, the NLR inflammasome has been shown to become activated following TBI, causing processing and release of interleukin-1ß (IL-1ß). The inflammasome is a multiprotein complex consisting of nucleotide-binding domain and leucine-rich repeat containing proteins (NLR), caspase-1, and apoptosis-associated speck-like protein (ASC). ASC is upregulated after TBI and is critical in coupling the proteins during complex formation resulting in IL-1ß cleavage. To directly test whether inflammasome activation contributes to acute TBI-induced damage, we assessed IL-1ß, IL-18, and IL-6 expression, contusion volume, hippocampal cell death, and motor behavior recovery in Nlrp1(-/-), Asc(-/-), and wild type mice after moderate controlled cortical impact (CCI) injury. Although IL-1ß expression is significantly attenuated in the cortex of Nlrp1(-/-) and Asc(-/-) mice following CCI injury, no difference in motor recovery, cell death, or contusion volume is observed compared to wild type. These findings indicate that inflammasome activation does not significantly contribute to acute neural injury in the murine model of moderate CCI injury.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Inflamassomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Lesões Encefálicas Traumáticas/induzido quimicamente , Lesões Encefálicas Traumáticas/genética , Proteínas Adaptadoras de Sinalização CARD , Caspase 1/metabolismo , Modelos Animais de Doenças , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Knockout
7.
Am J Physiol Gastrointest Liver Physiol ; 308(2): G139-50, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25414099

RESUMO

Nucleotide-binding domain and leucine-rich repeat containing protein inflammasome formation plays an essential role in modulating immune system homeostasis in the gut. Recently, a caspase-11 noncanonical inflammasome has been characterized and appears to modulate many biological functions that were previously considered to be solely dependent on caspase-1 and the canonical inflammasome. To better elucidate the function of this noncanonical inflammasome during inflammatory bowel disease, experimental colitis was induced in wild-type and Casp11(-/-) mice utilizing dextran sulfate sodium (DSS). Here, we report that caspase-11 attenuates acute experimental colitis pathogenesis. Casp11(-/-) mice showed significantly increased morbidity and colon inflammation following DSS exposure. Subsequent cytokine analysis revealed that IL-1ß and IL-18 levels in the colon were significantly reduced in the Casp11(-/-) mice compared with the wild-type animals. Additional mechanistic studies utilizing IL-1ß and IL-18 reconstitution revealed that Casp11(-/-) hypersensitivity was associated with the loss of both of these cytokines. Bone marrow reconstitution experiments further revealed that caspase-11 gene expression and function in both hematopoietic- and nonhematopoietic-derived cells contribute to disease attenuation. Interestingly, unlike caspase-1, caspase-11 does not appear to influence relapsing remitting disease progression or the development of colitis-associated tumorigenesis. Together, these data identify caspase-11 as a critical factor protecting the host during acute DSS-induced colonic injury and inflammation but not during chronic inflammation and tumorigenesis.


Assuntos
Caspases/genética , Colite/metabolismo , Trato Gastrointestinal/metabolismo , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/metabolismo , Caspase 1/metabolismo , Caspases Iniciadoras , Colite/induzido quimicamente , Colite/genética , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Expressão Gênica/fisiologia , Homeostase/genética , Inflamação/metabolismo , Camundongos , Camundongos Knockout
8.
Sci Transl Med ; 13(579)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536277

RESUMO

Development of safe and effective COVID-19 vaccines is a global priority and the best hope for ending the COVID-19 pandemic. Remarkably, in less than 1 year, vaccines have been developed and shown to be efficacious and are already being deployed worldwide. Yet, many challenges remain. Immune senescence and comorbidities in aging populations and immune dysregulation in populations living in low-resource settings may impede vaccine effectiveness. Distribution of vaccines among these populations where vaccine access is historically low remains challenging. In this Review, we address these challenges and provide strategies for ensuring that vaccines are developed and deployed for those most vulnerable.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/virologia , Suscetibilidade a Doenças , SARS-CoV-2/fisiologia , Animais , Vacinas contra COVID-19/efeitos adversos , Modelos Animais de Doenças , Humanos , Filogenia
9.
mSphere ; 5(1)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075884

RESUMO

Toxoplasma gondii causes a chronic infection that affects a significant portion of the world's population, and this latent infection is the source of reactivation of toxoplasmosis. An attribute of the slowly growing bradyzoite stage of the parasite is the formation of a cyst within infected cells, allowing the parasite to escape the host's immune response. In this study, a new bradyzoite cyst matrix antigen (MAG) was identified through a hybridoma library screen. This cyst matrix antigen, matrix antigen 2 (MAG2), contains 14 tandem repeats consisting of acidic, basic, and proline residues. Immunoblotting revealed that MAG2 migrates at a level higher than its predicted molecular weight, and computational analysis showed that the structure of MAG2 is highly disordered. Cell fractionation studies indicated that MAG2 was associated with both insoluble and soluble cyst matrix material, suggesting that it interacts with the intracyst network (ICN). Examination of the kinetics of MAG2 within the cyst matrix using fluorescence recovery after photobleaching (FRAP) demonstrated that MAG2 does not readily diffuse within the cyst matrix. Kinetic studies of MAG1 demonstrated that this protein has different diffusion kinetics in tachyzoite and bradyzoite vacuoles and that its mobility is not altered in the absence of MAG2. In addition, deletion of MAG2 does not influence growth, cystogenesis, or cyst morphology.IMPORTANCE This report expands on the list of characterized Toxoplasma gondii cyst matrix proteins. Using fluorescence recovery after photobleaching (FRAP), we have shown that matrix proteins within the cyst matrix are not mainly in a mobile state, providing further evidence of how proteins behave within the cyst matrix. Understanding the proteins expressed during the bradyzoite stage of the parasite reveals how the parasite functions during chronic infection.


Assuntos
Antígenos de Protozoários/genética , Estágios do Ciclo de Vida/genética , Proteínas de Protozoários/química , Toxoplasma/genética , Animais , Antígenos de Protozoários/química , Hibridomas , Cinética , Camundongos , Fotodegradação , Proteínas de Protozoários/genética , Toxoplasma/química , Toxoplasma/fisiologia
10.
mBio ; 11(1)2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019789

RESUMO

A characteristic of the latent cyst stage of Toxoplasma gondii is a thick cyst wall that forms underneath the membrane of the bradyzoite vacuole. Previously, our laboratory group published a proteomic analysis of purified in vitro cyst wall fragments that identified an inventory of cyst wall components. To further refine our understanding of the composition of the cyst wall, several cyst wall proteins were tagged with a promiscuous biotin ligase (BirA*), and their interacting partners were screened by streptavidin affinity purification. Within the cyst wall pulldowns, previously described cyst wall proteins, dense granule proteins, and uncharacterized hypothetical proteins were identified. Several of the newly identified hypothetical proteins were validated to be novel components of the cyst wall and tagged with BirA* to expand the model of the cyst wall interactome. Community detection of the cyst wall interactome model revealed three distinct clusters: a dense granule, a cyst matrix, and a cyst wall cluster. Characterization of several of the identified cyst wall proteins using genetic strategies revealed that MCP3 affects in vivo cyst sizes. This study provides a model of the potential protein interactions within the cyst wall and the groundwork to understand cyst wall formation.IMPORTANCE A model of the cyst wall interactome was constructed using proteins identified through BioID. The proteins within this cyst wall interactome model encompass several proteins identified in a prior characterization of the cyst wall proteome. This model provides a more comprehensive understanding of the composition of the cyst wall and may lead to insights on how the cyst wall is formed.


Assuntos
Parede Celular/metabolismo , Proteoma , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Células Cultivadas , Proteômica , Proteínas de Protozoários/genética , Vacúolos
11.
mBio ; 10(4)2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431557

RESUMO

Microsporidia are opportunistic intracellular pathogens that can infect a wide variety of hosts ranging from invertebrates to vertebrates. During invasion, the microsporidian polar tube pushes into the host cell, creating a protective microenvironment, the invasion synapse, into which the sporoplasm extrudes. Within the synapse, the sporoplasm then invades the host cell, forming a parasitophorous vacuole (PV). Using a proteomic approach, we identified Encephalitozoon hellem sporoplasm surface protein 1 (EhSSP1), which localized to the surface of extruded sporoplasms. EhSSP1 was also found to interact with polar tube protein 4 (PTP4). Recombinant EhSSP1 (rEhSSP1) bound to human foreskin fibroblasts, and both anti-EhSSP1 and rEhSSP1 caused decreased levels of host cell invasion, suggesting that interaction of SSP1 with the host cell was involved in invasion. Coimmunoprecipitation (Co-IP) followed by proteomic analysis identified host cell voltage-dependent anion channels (VDACs) as EhSSP1 interacting proteins. Yeast two-hybrid assays demonstrated that EhSSP1 was able to interact with VDAC1, VDAC2, and VDAC3. rEhSSP1 colocalized with the host mitochondria which were associated with microsporidian PVs in infected cells. Transmission electron microscopy revealed that the outer mitochondrial membrane interacted with meronts and the PV membrane, mitochondria clustered around meronts, and the VDACs were concentrated at the interface of mitochondria and parasite. Knockdown of VDAC1, VDAC2, and VDAC3 in host cells resulted in significant decreases in the number and size of the PVs and a decrease in mitochondrial PV association. The interaction of EhSSP1 with VDAC probably plays an important part in energy acquisition by microsporidia via its role in the association of mitochondria with the PV.IMPORTANCE Microsporidia are important opportunistic human pathogens in immune-suppressed individuals, such as those with HIV/AIDS and recipients of organ transplants. The sporoplasm is critical for establishing microsporidian infection. Despite the biological importance of this structure for transmission, there is limited information about its structure and composition that could be targeted for therapeutic intervention. Here, we identified a novel E. hellem sporoplasm surface protein, EhSSP1, and demonstrated that it can bind to host cell mitochondria via host VDAC. Our data strongly suggest that the interaction between SSP1 and VDAC is important for the association of mitochondria with the parasitophorous vacuole during microsporidian infection. In addition, binding of SSP1 to the host cell is associated with the final steps of invasion in the invasion synapse.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Microsporídios/metabolismo , Mitocôndrias/microbiologia , Canais de Ânion Dependentes de Voltagem/metabolismo , Citoplasma , Encephalitozoon , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteômica , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/genética
12.
Nat Commun ; 9(1): 5368, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560927

RESUMO

Foxp3+CD4+ regulatory T (Treg) cells are essential for preventing fatal autoimmunity and safeguard immune homeostasis in vivo. While expression of the transcription factor Foxp3 and IL-2 signals are both required for the development and function of Treg cells, the commitment to the Treg cell lineage occurs during thymic selection upon T cell receptor (TCR) triggering, and precedes the expression of Foxp3. Whether signals beside TCR contribute to establish Treg cell epigenetic and functional identity is still unknown. Here, using a mouse model with reduced IL-2 signaling, we show that IL-2 regulates the positioning of the pioneer factor SATB1 in CD4+ thymocytes and controls genome wide chromatin accessibility of thymic-derived Treg cells. We also show that Treg cells receiving only low IL-2 signals can suppress endogenous but not WT autoreactive T cell responses in vitro and in vivo. Our findings have broad implications for potential therapeutic strategies to reprogram Treg cells in vivo.


Assuntos
Reprogramação Celular/genética , Epigênese Genética/imunologia , Interleucina-2/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Autoimunidade/genética , Diferenciação Celular/imunologia , Reprogramação Celular/imunologia , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Listeriose/imunologia , Listeriose/microbiologia , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/metabolismo , Timócitos/imunologia , Timócitos/metabolismo , Timócitos/fisiologia , Timo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA