Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Anal Chem ; 96(6): 2318-2326, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301112

RESUMO

Ion mobility spectrometry (IMS) coupled to mass spectrometry (MS) has become a versatile tool to fractionate complex mixtures, distinguish structural isomers, and elucidate molecular geometries. Along with the whole MS field, IMS/MS advances to ever larger species. A topical proteomic problem is the discovery and characterization of d-amino acid-containing peptides (DAACPs) that are critical to neurotransmission and toxicology. Both linear IMS and FAIMS previously disentangled d/l epimers with up to ∼30 residues. In the first study using all three most powerful IMS methodologies─trapped IMS, cyclic IMS, and FAIMS─we demonstrate baseline resolution of the largest known d/l peptides (CHH from Homarus americanus with 72 residues) with a dynamic range up to 100. This expands FAIMS analyses of isomeric modified peptides, especially using hydrogen-rich buffers, to the ∼50-100 residue range of small proteins. The spectra for d and l are unprecedentedly strikingly similar except for a uniform shift of the separation parameter, indicating the conserved epimer-specific structural elements across multiple charge states and conformers. As the interepimer resolution tracks the average for smaller DAACPs, the IMS approaches could help search for yet larger DAACPs. The a priori method to calibrate cyclic (including multipass) IMS developed here may be broadly useful.


Assuntos
Peptídeos , Proteômica , Peptídeos/química , Espectrometria de Massas/métodos , Proteínas , Espectrometria de Mobilidade Iônica , Aminoácidos/química
2.
Anal Chem ; 95(37): 13992-14000, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37683280

RESUMO

Herein, we introduce a two-dimensional strategy to better characterize carbohydrate isomers. In a single experiment, we can derive cyclic ion mobility-mass spectrometry (cIMS-MS)-based collision cross-section (CCS) values in conjunction with measuring isotopic shifts through the relative arrival times of light and heavy isotopologues. These isotopic shifts were introduced by permethylating carbohydrates with either light, CH3, or heavy, CD3, labels at every available hydroxyl group to generate a light/heavy pair of isotopologues for every individual species analyzed. We observed that our calculated CCS values, which were exclusively measured for the light isotopologues, were orthogonal to our measured isotopic shifts (i.e., relative arrival time values between heavy and light permethylated isotopologues). Our permethylation-induced isotopic shifts scaled well with increasing molecular weight, up to ∼m/z 1300, expanding the analysis of isotopic shifts to molecules 3-4 times as large as those previously studied. Our presented use of coupling CCS values with the measurement of isotopic shifts in a single cIMS-MS experiment is a proof-of-concept demonstration that our two-dimensional approach can improve the characterization of challenging isomeric carbohydrates. We envision that our presented 2D approach will have broad utility for varying molecular classes as well as being amenable to many forms of derivatization.

3.
Anal Chem ; 94(37): 12890-12898, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067027

RESUMO

Herein, we present the use of mass distribution-based isotopic shifts in high-resolution cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS)-based separations to characterize various isomeric species as well as conformers. Specifically, by using the observed relative arrival time values for the isotopologues found in the isotopic envelope after long pathlength cIMS-MS separations, we were able to distinguish dibromoaniline, dichloroaniline, and quaternary ammonium salt isomers, as well as a pair of 25-hydroxyvitamin D3 conformers based on their respective mass distribution-based shifts. Our observed shifts were highly reproducible and broadly applied to the isotopologues of various atoms (i.e., Cl, Br, and C). Additionally, through a control experiment, we determined that such shifts are indeed pathlength-independent, thus demonstrating that our presented methodology could be readily extended to other high-resolution IMS-MS platforms. These results are the first characterization of conformers using mass distribution-based IMS-MS shifts, as well as the first use of a commercial cIMS-MS platform to characterize isomers via their mass distribution-based shifts. We anticipate that our methodology will have broad applicability for biological analytes and that mass distribution-based shifts could potentially act as an added dimension of analysis in existing IMS-MS workflows in omics-based research. Specifically, we envision that the development of a database of these mass distribution-based shifts could, for example, enable the identification of unknown metabolites in complex matrices.


Assuntos
Compostos de Amônio , Calcifediol , Espectrometria de Mobilidade Iônica/métodos , Isomerismo , Espectrometria de Massas/métodos
4.
Anal Chem ; 94(6): 2988-2995, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35107996

RESUMO

Herein, we report on the experimental measurements for estimated relative mobility shifts caused by changes in mass distribution from isotopic substitutions in isotopologues and isotopomers with high-resolution cyclic ion mobility separations. By utilizing unlabeled and fully labeled isotopologues with the same isotopic substitutions (i.e., 2H or 13C), we created a highly precise mobility scale for each set analyzed to determine the magnitude of such mass distribution shifts and thus calculate estimated deviations from expected, theoretical reduced mass contributions. We observed relative mobility shifts in various isotopologues (e.g., hexadecyltrimethylammonium, sucrose, and palmitic acid species) that deviated from reduced mass theory, according to the Mason-Schamp relationship, ranging in estimated magnitude from ∼0.007% up to ∼0.1% in relative mobility. More interestingly, it was found that two deuterated palmitic acid isotopomers also differed by ∼0.03% from one another in their respective relative mobility shifts. Our results are the first report of isotopologue and isotopomer separations on a commercially available cyclic ion mobility spectrometry-mass spectrometry platform. We envision that our presented mobility scale methodology will have broad applicability in studying the effect of mass distribution changes from isotopic substitutions in other biomolecules and help pave the way for the improvement of ion mobility theory and collision cross section calculators.


Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Massas/métodos
5.
Am J Physiol Endocrinol Metab ; 313(6): E737-E747, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28899858

RESUMO

The metabolic stress placed on skeletal muscle by aerobic exercise promotes acute and long-term health benefits in part through changes in gene expression. However, the transducers that mediate altered gene expression signatures have not been completely elucidated. Regulated in development and DNA damage 1 (REDD1) is a stress-induced protein whose expression is transiently increased in skeletal muscle following acute aerobic exercise. However, the role of this induction remains unclear. Because REDD1 altered gene expression in other model systems, we sought to determine whether REDD1 induction following acute exercise altered the gene expression signature in muscle. To do this, wild-type and REDD1-null mice were randomized to remain sedentary or undergo a bout of acute treadmill exercise. Exercised mice recovered for 1, 3, or 6 h before euthanization. Acute exercise induced a transient increase in REDD1 protein expression within the plantaris only at 1 h postexercise, and the induction occurred in both cytosolic and nuclear fractions. At this time point, global changes in gene expression were surveyed using microarray. REDD1 induction was required for the exercise-induced change in expression of 24 genes. Validation by RT-PCR confirmed that the exercise-mediated changes in genes related to exercise capacity, muscle protein metabolism, neuromuscular junction remodeling, and Metformin action were negated in REDD1-null mice. Finally, the exercise-mediated induction of REDD1 was partially dependent upon glucocorticoid receptor activation. In all, these data show that REDD1 induction regulates the exercise-mediated change in a distinct set of genes within skeletal muscle.


Assuntos
Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Aerobiose , Animais , Núcleo Celular/metabolismo , Corticosterona/sangue , Citosol/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Hipoglicemiantes/farmacologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , Fadiga Muscular , Receptores de Glucocorticoides/metabolismo
6.
Biochem Biophys Res Commun ; 482(4): 1067-1072, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27913296

RESUMO

Recent findings in adipocytes suggest that mitogen-activated protein kinase (MAPK)/extracellular-regulated signaling kinase (ERK) kinase 1/2 (MEK1/2) signaling regulates regulated in development and DNA damage 1 (REDD1) protein expression. Similarly, our previous work show that a lack of REDD1 protein expression, and associated hyperactive basal mechanistic target of rapamycin (mTOR) signaling, limits skeletal muscle's response to insulin. Therefore, we sought to determine: 1) if MEK1/2 inhibition is sufficient to reduce REDD1 protein expression and subsequently insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation via negative feedback of hyperactive mTOR in REDD1 wild-type (WT) mice and 2) if rapamycin-mediated mTOR inhibition is sufficient to improve IRS-1 tyrosine phosphorylation in REDD1 knockout (KO) mice. REDD1 WT mice were injected with 10 mg/kg BW of the MEK1/2 non-competitive inhibitor, PD184352, 3 h prior to acute insulin treatment. In separate studies, REDD1 KO mice were injected with 5 mg/kg BW of the mTOR inhibitor, rapamycin, 3 h prior to acute insulin treatment. Following the inhibitor treatment period, markers of insulin signaling activation (IRS-1 Y1222, MEK1/2 S217/221, ERK1/2 T202/Y204), REDD1, and mTOR signaling activation (S6K1 T389, rpS6 S240/244) were examined in skeletal muscle collected before and after a 10 min insulin treatment. PD184352 treatment reduced MEK/ERK phosphorylation and REDD1 protein expression, independent of insulin. This reduction in REDD1 protein expression was associated with elevated basal S6K1 and rpS6 phosphorylation and reduced insulin stimulated IRS-1 phosphorylation. Conversely, rapamycin inhibited S6K1 and rpS6 activation, and significantly improved insulin -stimulated activation of IRS-1 and MEK1/2 in KO mice. These data support that REDD1 is required for normal insulin-stimulated signaling, and that a subtle balance exists between MEK1/2, REDD1, and mTOR for the proper regulation of insulin signaling.


Assuntos
Insulina/metabolismo , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Animais , Benzamidas/química , Camundongos , Camundongos Knockout , Fosforilação , Transdução de Sinais , Sirolimo/química , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética
7.
Am J Physiol Endocrinol Metab ; 311(1): E157-74, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27189933

RESUMO

Since its discovery, the protein regulated in development and DNA damage 1 (REDD1) has been implicated in the cellular response to various stressors. Most notably, its role as a repressor of signaling through the central metabolic regulator, the mechanistic target of rapamycin in complex 1 (mTORC1) has gained considerable attention. Not surprisingly, changes in REDD1 mRNA and protein have been observed in skeletal muscle under various physiological conditions (e.g., nutrient consumption and resistance exercise) and pathological conditions (e.g., sepsis, alcoholism, diabetes, obesity) suggesting a role for REDD1 in regulating mTORC1-dependent skeletal muscle protein metabolism. Our understanding of the causative role of REDD1 in skeletal muscle metabolism is increasing mostly due to the availability of genetically modified mice in which the REDD1 gene is disrupted. Results from such studies provide support for an important role for REDD1 in the regulation of mTORC1 as well as reveal unexplored functions of this protein in relation to other aspects of skeletal muscle metabolism. The goal of this work is to provide a comprehensive review of the role of REDD1 (and its paralog REDD2) in skeletal muscle during both physiological and pathological conditions.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Alcoolismo/metabolismo , Animais , Diabetes Mellitus/metabolismo , Exercício Físico , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Obesidade/metabolismo , Condicionamento Físico Animal , Ratos , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Treinamento Resistido , Sepse/metabolismo , Fatores de Transcrição/fisiologia
8.
Muscle Nerve ; 53(1): 107-17, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25926238

RESUMO

INTRODUCTION: Appropriate activation of growth signaling pathways, specifically mammalian target of rapamycin complex 1 (mTORC1), is central to muscle mass and metabolism. The goal of these studies was to examine the effects of metformin on mTORC1 signaling in aged skeletal muscle in an attempt to normalize growth signaling. METHODS: Aged (23m) and young (3m) male mice were fed a low fat diet without or with 0.5% metformin for up to 8 weeks, then mTORC1-related signaling was examined in the plantar flexor complex. RESULTS: Metformin had no significant effect on lowering body weight or muscle mass in aged animals, nor altered p70 S6 Kinase 1 (S6K1) and 4E-binding protein 1 (4E-BP1) phosphorylation. However, it significantly (P < 0.05) reduced body weight and lowered S6K1 and rpS6 phosphorylation in the young. CONCLUSIONS: Collectively, these data suggest metformin is ineffective at normalizing growth signaling in aged skeletal muscle.


Assuntos
Envelhecimento/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Complexos Multiproteicos/metabolismo , Músculo Esquelético/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fatores Etários , Animais , Teste de Esforço , Antígenos de Histocompatibilidade Classe I/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo
9.
Am J Physiol Regul Integr Comp Physiol ; 309(8): R855-63, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26269521

RESUMO

The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m(-2)·min(-1))-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Insulina/farmacologia , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Pessoa de Meia-Idade , Complexos Multiproteicos/genética , Músculo Esquelético/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética
10.
J Nutr ; 145(4): 708-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25716553

RESUMO

BACKGROUND: In skeletal muscle, the nutrient-induced stimulation of protein synthesis requires signaling through the mechanistic target of rapamycin complex 1 (mTORC1). Expression of the repressor of mTORC1 signaling, regulated in development and DNA damage 1 (REDD1), is elevated in muscle during various atrophic conditions and diminished under hypertrophic conditions. The question arises as to what extent REDD1 limits the nutrient-induced stimulation of protein synthesis. OBJECTIVE: The objective was to examine the role of REDD1 in limiting the response of muscle protein synthesis and mTORC1 signaling to a nutrient stimulus. METHODS: Wild type REDD1 gene (REDD1(+/+)) and disruption in the REDD1 gene (REDD1(-/-)) mice were feed deprived for 16 h and randomized to remain feed deprived or refed for 15 or 60 min. The tibialis anterior was then removed for analysis of protein synthesis and mTORC1 signaling. RESULTS: In feed-deprived mice, protein synthesis and mTORC1 signaling were significantly lower in REDD1(+/+) than in REDD1(-/-) mice. Thirty minutes after the start of refeeding, protein synthesis in REDD1(+/+) mice was stimulated by 28%, reaching a value similar to that observed in feed-deprived REDD1(-/-) mice, and was accompanied by increased phosphorylation of mTOR (Ser2448), p70S6K1 (Thr389), and 4E-BP1 (Ser65) by 81%, 167%, and 207%, respectively. In refed REDD1(-/-) mice, phosphorylation of mTOR (Ser2448), p70S6K1 (Thr389), and 4E-BP1 (Ser65) were significantly augmented above the values observed in refed REDD1(+/+) mice by 258%, 405%, and 401%, respectively, although protein synthesis was not coordinately increased. Seventy-five minutes after refeeding, REDD1 expression in REDD1(+/+) mice was reduced (∼15% of feed-deprived REDD1(+/+) values), and protein synthesis and mTORC1 signaling were not different between refed REDD1(+/+) mice and REDD1(-/-) mice. CONCLUSIONS: The results show that REDD1 expression limits protein synthesis in mouse skeletal muscle by inhibiting mTORC1 signaling during periods of feed deprivation and that a reduction in its expression is necessary for maximal stimulation of protein synthesis in response to refeeding.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Fatores de Iniciação em Eucariotos , Regulação da Expressão Gênica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Micronutrientes/administração & dosagem , Complexos Multiproteicos/genética , Proteínas Musculares/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética
11.
Biochem Biophys Res Commun ; 453(4): 778-83, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25445588

RESUMO

A lack of the REDD1 promotes dysregulated growth signaling, though little has been established with respect to the metabolic role of REDD1. Therefore, the goal of this study was to determine the role of REDD1 on glucose and insulin tolerance, as well as insulin stimulated growth signaling pathway activation in skeletal muscle. First, intraperitoneal (IP) injection of glucose or insulin were administered to REDD1 wildtype (WT) versus knockout (KO) mice to examine changes in blood glucose over time. Next, alterations in skeletal muscle insulin (IRS-1, Akt, ERK 1/2) and growth (4E-BP1, S6K1, REDD1) signaling intermediates were determined before and after IP insulin treatment (10min). REDD1 KO mice were both glucose and insulin intolerant when compared to WT mice, evident by higher circulating blood glucose concentrations and a greater area under the curve following IP injections of glucose or insulin. While the REDD1 KO exhibited significant though blunted insulin-stimulated increases (p<0.05) in Akt S473 and T308 phosphorylation versus the WT mice, acute insulin treatment has no effect (p<0.05) on REDD1 KO skeletal muscle 4E-BP1 T37/46, S6K1 T389, IRS-1 Y1222, and ERK 1/2 T202/Y204 phosphorylation versus the WT mice. Collectively, these novel data suggest that REDD1 has a more distinct role in whole body and skeletal muscle metabolism and insulin action than previously thought.


Assuntos
Glucose/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Animais , Glicemia/metabolismo , Teste de Tolerância a Glucose , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-38654703

RESUMO

The unexpected finding that isotopomers (i.e., isotopic isomers) can be separated with high-resolution ion mobility spectrometry-mass spectrometry (IMS-MS) has raised new structural considerations affecting an ion's mobility, namely its center of mass (CoM) and moments of inertia (MoI). Unfortunately, thus far, no studies have attempted to experimentally isolate either CoM or MoI, as they are intrinsically linked by their definitions, where MoI is calculated in relation to CoM. In this study, we designed and synthesized four isotopically labeled tetrapropylammonium (TAA3) ions, each with a unique mass distribution. Three of the synthesized TAA3 ions were labeled symmetrically, thus having identical CoM but differing MoI, which we verified using density functional theory (DFT) calculations. Consequently, we were able to isolate the effect of MoI changes in high-resolution IMS-MS separations. Cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS) separations of the isotopically labeled TAA3 variants revealed isotopic mobility shifts attributable solely to changes in MoI. A 60-m cIMS-MS separation demonstrated that two nominally isobaric TAA3 pseudoisotopomers could be partially resolved, showcasing potential feasibility for isotopomer separations on commercially available IMS-MS platforms. With our previously established collision cross section (CCS) calibration protocol, we also quantified the relationship between MoI and CCS. Our results represent the first demonstration of IMS-MS separations based solely on MoI differences. We believe these findings will contribute important evidence to the growing body of literature on the physical nature of isotopic shifts in IMS-MS separations and work toward more accurate CCS predictions.

13.
ACS Chem Biol ; 19(1): 81-88, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38109560

RESUMO

Lasso peptides are a structurally distinct class of biologically active natural products defined by their short sequences with impressively interlocked tertiary structures. Their characteristic peptide [1]rotaxane motif confers marked proteolytic and thermal resiliency, and reports on their diverse biological functions have been credited to their exceptional sequence variability. Because of these unique properties, taken together with improved technologies for their biosynthetic production, lasso peptides are emerging as a designable scaffold for peptide-based therapeutic discovery and development. Although the defined structure of lasso peptides is recognized for its remarkable properties, the role of the motif in imparting bioactivity is less understood. For example, sungsanpin and ulleungdin are natural lasso peptides that similarly exhibit encouraging cell migration inhibitory activities in A549 lung carcinoma epithelial cells, despite sharing only one-third of the sequence homology. We hypothesized that the shape of the lasso motif is beneficial for the preorganization of the conserved residues, which might be partially retained in variants lacking the threaded structure. Herein, we describe solid-phase peptide synthesis strategies to prepare acyclic, head-to-side chain (branched), and head-to-tail (macrocyclic) cyclic variants based on the sungsanpin (Sun) and ulleungdin (Uln) sequences. Proliferation assays and time-lapse cell motility imaging studies were used to evaluate the cell inhibitory properties of natural Sun compared with the synthetic Sun and Uln isomers. These studies demonstrate that the lasso motif is not a required feature to slow cancer cell migration and more generally show that these nonthreaded isomers can retain similar activity to the natural lasso peptide despite the differences in their overall structures.


Assuntos
Neoplasias Pulmonares , Peptídeos , Humanos , Peptídeos/farmacologia , Peptídeos/química , Peptídeo Hidrolases , Movimento Celular
14.
Artigo em Inglês | MEDLINE | ID: mdl-38992936

RESUMO

Cyclic peptides are an important class of molecules that gained significant attention in the field of drug discovery due to their unique pharmacological characteristics and enhanced proteolytic stability. Yet, gastrointestinal degradation remains a major hurdle in the discovery of orally bioavailable cyclic peptides. Soft spot identification (SSID) of the regions in the cyclic peptide sequence susceptible to amide hydrolysis by proteases is used in the discovery stage to guide medicinal chemistry design. SSID can be an arduous task, traditionally performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), often resulting in complex and time-consuming manual analysis, particularly when isomeric linear peptide metabolites chromatographically coelute. Here, we present an alternative orthogonal approach that entails a high-resolution ion mobility (HRIM) system based on Structures for Lossless Ion Manipulation (SLIM) technology interfaced with quadrupole time-of-flight (QTOF) mass spectrometry to address some of the challenges associated with SSID. Two strategies were used to resolve linear isomeric peptide metabolites: labeled and label-free, both utilizing the HRIM platform. The label-free strategy leverages negative polarity to ionize the isomers which achieves better separation of the gas phase ions in the ion mobility (IM) dimension as compared to positive polarity, which is a more conventional approach when studying proteins and peptides. The second approach uses an isotope-labeled dimethyl tag on the terminal amine group, acting as a "shift reagent" to influence the mobility of isomers in the positive mode. This method resulted in baseline separation for the isomers of interest and produced unique product ions in the fragmentation spectra for unambiguous soft spot identification. Both label-free and labeled strategies demonstrated the ability to solve the challenges associated with SSID for cyclic peptides.

15.
J Am Soc Mass Spectrom ; 34(6): 1024-1034, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37098274

RESUMO

The mass distribution of ions influences separations in ion mobility spectrometry-mass spectrometry (IMS-MS). Herein, we introduce a method to induce mass distribution shifts for various analytes using hydrogen-deuterium exchange (HDX) immediately prior to ionization using a dual syringe approach. By replacing labile hydrogens on analytes with deuteriums, we were able to differentiate isomers using separations of isotopologues. For each analyte studied, every possible level of deuteration (from undeuterated to fully deuterated) was generated and then separated using cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS). The information gained from such separations (relative arrival times; tRel. values) was found to be orthogonal to conventional IMS-MS separations. Additionally, the observed shifts were linearly additive with increasing deuteration, suggesting that this methodology could be extended to analytes with a larger number of labile hydrogens. For one isomer pair, as few as two deuteriums were able to produce a large enough mass distribution shift to differentiate isomers. In another experiment, we found that the mass distribution shift was large enough to overcome the reduced mass contribution, resulting in a "flipped" arrival time where the heavier deuterated isotopologue arrived before the lighter one. In this work, we present a proof-of-concept demonstration that mass-distribution-based shifts, tRel. values, could potentially act as an added dimension to characterize molecules in IMS-MS. We anticipate, along with future work in this area, that mass-distribution-based shifts could enable the identification of unknown molecules through a database-driven approach in an analogous fashion to collision cross section (CCS) measurements.

17.
ACS Meas Sci Au ; 2(4): 361-369, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36785568

RESUMO

Ion mobility spectrometry coupled to mass spectrometry (IMS-MS) is slowly becoming a more integral part in omics-based workflows. With the recent technological advancements in IMS-MS instrumentation, particularly those involving traveling wave-based separations, ultralong pathlengths have become readily available in commercial platforms (e.g., Select Series Cyclic IMS from Waters Corporation and MOBIE from MOBILion). However, a tradeoff exists in such ultralong pathlength separations: increasing peak-to-peak resolution at the cost of lower signal intensities and thus poorer sensitivity of measurements. Herein, we explore the utility of temporal compression, where ions are compressed in the time domain, following high-resolution cyclic ion mobility spectrometry-mass spectrometry-based separations on a commercially available, unmodified platform. We assessed temporal compression in the context of various separations including those of reverse sequence peptide isomers, chiral noncovalent complexes, and isotopologues. From our results, we demonstrated that temporal compression improves IMS peak intensities by up to a factor of 4 while only losing ∼5 to 10% of peak-to-peak resolution. Additionally, the improvement in peak quality and signal-to-noise ratio was evident when comparing IMS-MS separations with and without a temporal compression step performed. Temporal compression can readily be implemented in existing traveling wave-based IMS-MS platforms, and our initial proof-of-concept demonstration shows its promise as a tool for improving peak shapes and peak intensities without sacrificing losses in resolution.

18.
Diabetes ; 71(5): 1051-1062, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35167652

RESUMO

Clinical studies support a role for the protein regulated in development and DNA damage response 1 (REDD1) in ischemic retinal complications. To better understand how REDD1 contributes to retinal pathology, we examined human single-cell sequencing data sets and found specificity of REDD1 expression that was consistent with markers of retinal Müller glia. Thus, we investigated the hypothesis that REDD1 expression specifically in Müller glia contributes to diabetes-induced retinal pathology. The retina of Müller glia-specific REDD1 knockout (REDD1-mgKO) mice exhibited dramatic attenuation of REDD1 transcript and protein expression. In the retina of streptozotocin-induced diabetic control mice, REDD1 protein expression was enhanced coincident with an increase in oxidative stress. In the retina of diabetic REDD1-mgKO mice, there was no increase in REDD1 protein expression, and oxidative stress was reduced compared with diabetic control mice. In both Müller glia within the retina of diabetic mice and human Müller cell cultures exposed to hyperglycemic conditions, REDD1 was necessary for increased expression of the gliosis marker glial fibrillary acidic protein. The effect of REDD1 deletion in preventing gliosis was associated with suppression of oxidative stress and required the antioxidant transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2). In contrast to diabetic control mice, diabetic REDD1-mgKO mice did not exhibit retinal thinning, increased markers of neurodegeneration within the retinal ganglion cell layer, or deficits in visual function. Overall, the findings support a key role for Müller glial REDD1 in the failed adaptive response of the retina to diabetes that includes gliosis, neurodegeneration, and impaired vision.


Assuntos
Diabetes Mellitus Experimental , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Células Ependimogliais , Gliose/metabolismo , Gliose/patologia , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Retina/metabolismo
19.
J Appl Physiol (1985) ; 132(2): 357-366, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34941434

RESUMO

Thioredoxin-interacting protein (TXNIP) negatively effects the redox state and growth signaling via its interactions with thioredoxin (TRX) and regulated in development and DNA damage response 1 (REDD1), respectively. TXNIP expression is downregulated by pathways activated during aerobic exercise (AE), via posttranslational modifications (PTMs; serine phosphorylation and ubiquitination). The purpose of this investigation was to determine the effects of acute AE on TXNIP expression, posttranslational modifications, and its interacting partners, REDD1 and TRX. Fifteen healthy adults performed 30 min of aerobic exercise (80% V̇o2max) with muscle biopsies taken before, immediately following, and 3 h following the exercise bout. To explore potential mechanisms underlying our in vivo findings, primary human myotubes were exposed to two models of exercise, electrical pulse stimulation (EPS) and palmitate-forskolin-ionomycin (PFI). Immediately following exercise, TXNIP protein decreased, but returned to preexercise levels 3 h after exercise. These results were replicated in our PFI exercise model only. Although not statistically significant, there was a trending main effect in serine-phosphorylation status of TXNIP (P = 0.07) immediately following exercise. REDD1 protein decreased 3 h after exercise. AE had no effect on TRX protein expression, gene expression, or the activity of its reducing enzyme, thioredoxin reductase. Consequently, AE had no effect on the TRX: TXNIP interaction. Our results indicate that AE leads to acute reductions in TXNIP and REDD1 protein expression. However, these changes did not result in alterations in the TRX: TXNIP interaction and could not be entirely explained by alterations in TXNIP PTMs or changes in TRX expression or activity.NEW & NOTEWORTHY Aerobic exercise is an effective tool in the prevention and treatment of several chronic metabolic diseases. However, the mechanisms through which these benefits are conferred have yet to be fully elucidated. Our data reveal a novel effect of aerobic exercise on reducing the protein expression of molecular targets that negatively impact redox and insulin/growth signaling in skeletal muscle. These findings contribute to the expanding repository of molecular signatures provoked by aerobic exercise.


Assuntos
Proteínas de Transporte , Exercício Físico , Músculo Esquelético , Fatores de Transcrição/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Insulina/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA