Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32737130

RESUMO

Deletion of the pcaHG genes, encoding protocatechuate 3,4-dioxygenase in Rhodococcus jostii RHA1, gives a gene deletion strain still able to grow on protocatechuic acid as the sole carbon source, indicating a second degradation pathway for protocatechuic acid. Metabolite analysis of wild-type R. jostii RHA1 grown on medium containing vanillin or protocatechuic acid indicated the formation of hydroxyquinol (benzene-1,2,4-triol) as a downstream product. Gene cluster ro01857-ro01860 in Rhodococcus jostii RHA1 contains genes encoding hydroxyquinol 1,2-dioxygenase and maleylacetate reductase for degradation of hydroxyquinol but also putative mono-oxygenase (ro01860) and putative decarboxylase (ro01859) genes, and a similar gene cluster is found in the genome of lignin-degrading Agrobacterium species. Recombinant R. jostii mono-oxygenase and decarboxylase enzymes in combination were found to convert protocatechuic acid to hydroxyquinol. Hence, an alternative pathway for degradation of protocatechuic acid via oxidative decarboxylation to hydroxyquinol is proposed.IMPORTANCE There is a well-established paradigm for degradation of protocatechuic acid via the ß-ketoadipate pathway in a range of soil bacteria. In this study, we have found the existence of a second pathway for degradation of protocatechuic acid in Rhodococcus jostii RHA1, via hydroxyquinol (benzene-1,2,4-triol), which establishes a metabolic link between protocatechuic acid and hydroxyquinol. The presence of this pathway in a lignin-degrading Agrobacterium sp. strain suggests the involvement of the hydroxyquinol pathway in the metabolism of degraded lignin fragments.


Assuntos
Agrobacterium/metabolismo , Proteínas de Bactérias/genética , Hidroquinonas/metabolismo , Hidroxibenzoatos/metabolismo , Lignina/metabolismo , Rhodococcus/metabolismo , Proteínas de Bactérias/metabolismo , Deleção de Genes , Redes e Vias Metabólicas , Família Multigênica
2.
Curr Opin Chem Biol ; 55: 26-33, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31918394

RESUMO

The conversion of polymeric lignin from plant biomass into renewable chemicals is an important unsolved problem in the biorefinery concept. This article summarises recent developments in the discovery of bacterial enzymes for lignin degradation, our current understanding of their molecular mechanism of action, and their use to convert lignin or lignocellulose into aromatic chemicals. The review also discusses the recent developments in screening of metagenomic libraries for new biocatalysts, and the use of protein engineering to enhance lignin degradation activity.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Enzimas/química , Lignina/química , Plantas/química , Proteínas de Bactérias/metabolismo , Biocatálise , Biomassa , Técnicas Biossensoriais , Biotransformação , Enzimas/metabolismo , Hidrocarbonetos Aromáticos/química , Lignina/metabolismo , Metagenoma , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Bibliotecas de Moléculas Pequenas/química
3.
Biotechnol J ; 15(7): e1900571, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32488970

RESUMO

Ferulic acid is a renewable chemical found in lignocellulose from grasses such as wheat straw and sugarcane. Pseudomonas putida is able to liberate and metabolize ferulic acid from plant biomass. Deletion of the hydroxycinnamoyl-CoA hydratase-lyase gene (ech) produced a strain of P. putida unable to utilize ferulic and p-coumaric acid, which is able to accumulate ferulic acid and p-coumaric acid from wheat straw or sugar cane bagasse. Further engineering of this strain saw the replacement of ech with the phenolic acid decarboxylase padC, which converts p-coumaric and ferulic acid into 4-vinylphenol and the flavor agent 4-vinylguaiacol, respectively. The engineered strain containing padC is able to generate 4-vinylguaiacol and 4-vinylphenol from media containing lignocellulose or Green Value Protobind lignin as feedstock, and does not require the addition of an exogenous inducer molecule. Biopolymerization of 4-vinylguaiacol and 4-vinylcatechol styrene products is also carried out, using Trametes versicolor laccase, to generate "biopolystyrene" materials on small scale.


Assuntos
Lignina/metabolismo , Engenharia Metabólica/métodos , Pseudomonas putida , Estireno , Biopolímeros/química , Biopolímeros/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Guaiacol/análogos & derivados , Guaiacol/química , Guaiacol/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Estireno/química , Estireno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA