Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(12): 4697-702, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23401527

RESUMO

Glial proliferation and activation are associated with disease progression in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia. In this study, we describe a unique platform to address the question of cell autonomy in transactive response DNA-binding protein (TDP-43) proteinopathies. We generated functional astroglia from human induced pluripotent stem cells carrying an ALS-causing TDP-43 mutation and show that mutant astrocytes exhibit increased levels of TDP-43, subcellular mislocalization of TDP-43, and decreased cell survival. We then performed coculture experiments to evaluate the effects of M337V astrocytes on the survival of wild-type and M337V TDP-43 motor neurons, showing that mutant TDP-43 astrocytes do not adversely affect survival of cocultured neurons. These observations reveal a significant and previously unrecognized glial cell-autonomous pathological phenotype associated with a pathogenic mutation in TDP-43 and show that TDP-43 proteinopathies do not display an astrocyte non-cell-autonomous component in cell culture, as previously described for SOD1 ALS. This study highlights the utility of induced pluripotent stem cell-based in vitro disease models to investigate mechanisms of disease in ALS and other TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica , Astrócitos , Células-Tronco Pluripotentes Induzidas , Neurônios Motores , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Técnicas de Cocultura , Proteínas de Ligação a DNA/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação
3.
Proc Natl Acad Sci U S A ; 109(15): 5803-8, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22451909

RESUMO

Transactive response DNA-binding (TDP-43) protein is the dominant disease protein in amyotrophic lateral sclerosis (ALS) and a subgroup of frontotemporal lobar degeneration (FTLD-TDP). Identification of mutations in the gene encoding TDP-43 (TARDBP) in familial ALS confirms a mechanistic link between misaccumulation of TDP-43 and neurodegeneration and provides an opportunity to study TDP-43 proteinopathies in human neurons generated from patient fibroblasts by using induced pluripotent stem cells (iPSCs). Here, we report the generation of iPSCs that carry the TDP-43 M337V mutation and their differentiation into neurons and functional motor neurons. Mutant neurons had elevated levels of soluble and detergent-resistant TDP-43 protein, decreased survival in longitudinal studies, and increased vulnerability to antagonism of the PI3K pathway. We conclude that expression of physiological levels of TDP-43 in human neurons is sufficient to reveal a mutation-specific cell-autonomous phenotype and strongly supports this approach for the study of disease mechanisms and for drug screening.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/patologia , Mutação/genética , Proteinopatias TDP-43/genética , Adulto , Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Detergentes/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Solubilidade/efeitos dos fármacos
4.
J Cell Sci ; 125(Pt 15): 3630-5, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22505616

RESUMO

The coordination of signalling pathways within the cell is vital for normal human development and post-natal tissue homeostasis. Gene expression and function is therefore tightly controlled at a number of levels. We investigated the role that post-translational modifications play during human hepatocyte differentiation. In particular, we examined the role of the small ubiquitin-like modifier (SUMO) proteins in this process. We used a human embryonic stem cell (hESC)-based model of hepatocyte differentiation to follow changes in protein SUMOylation. Moreover, to confirm the results derived from our cell-based system, we performed in vitro conjugation assays to characterise SUMO modification of a key liver-enriched transcription factor, HNF4α. Our analyses indicate that SUMOylation plays an important role during hepatocellular differentiation and this is mediated, in part, through regulation of the stability of HNF4α in a ubiquitin-dependent manner. Our study provides a better understanding of SUMOylation during human hepatocyte differentiation and maturation. Moreover, we believe the results will stimulate interest in the differentiation and phenotypic regulation of other somatic cell types.


Assuntos
Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Domínio Catalítico , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fator 4 Nuclear de Hepatócito/biossíntese , Fator 4 Nuclear de Hepatócito/genética , Humanos , Proteínas Nucleares/metabolismo , Estresse Oxidativo/fisiologia , Estabilidade Proteica , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ubiquitinação
5.
J Cell Sci ; 124(Pt 11): 1878-90, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21576353

RESUMO

We report here that the formation of heterochromatin in cell nuclei during mouse development is characterised by dynamic changes in the epigenetic modifications of histones. Our observations reveal that heterochromatin in mouse preimplantation embryos is in an immature state that lacks the constitutive heterochromatin markers histone H4 trimethyl Lys20 (H4K20me3) and chromobox homolog 5 (HP1α, also known as CBX5). Remarkably, these somatic heterochromatin hallmarks are not detectable--except in mural trophoblast--until mid-gestation, increasing in level during foetal development. Our results support a developmentally regulated connection between HP1α and H4K20me3. Whereas inner cell mass (ICM) and epiblast stain negative for H4K20me3 and HP1α, embryonic stem (ES) cell lines, by contrast, stain positive for these markers, indicating substantial chromatin divergence. We conclude that H4K20me3 and HP1α are late developmental epigenetic markers, and slow maturation of heterochromatin in tissues that develop from ICM is ectopically induced during ES cell derivation. Our findings suggest that H4K20me3 and HP1α are markers for cell type commitment that can be triggered by developmental or cell context, independently of the differentiation process.


Assuntos
Antígenos de Diferenciação/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Diferenciação Celular/genética , Homólogo 5 da Proteína Cromobox , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Heterocromatina/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Mórula/citologia , Mórula/metabolismo , Transcrição Gênica , Zigoto/citologia , Zigoto/metabolismo
6.
Proc Natl Acad Sci U S A ; 107(41): 17639-44, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20876089

RESUMO

The mammalian oocyte possesses powerful reprogramming factors, which can reprogram terminally differentiated germ cells (sperm) or somatic cells within a few cell cycles. Although it has been suggested that use of oocyte-derived transcripts may enhance the generation of induced pluripotent stem cells, the reprogramming factors in oocytes are undetermined, and even the identified proteins composition of oocytes is very limited. In the present study, 7,000 mouse oocytes at different developmental stages, including the germinal vesicle stage, the metaphase II (MII) stage, and the fertilized oocytes (zygotes), were collected. We successfully identified 2,781 proteins present in germinal vesicle oocytes, 2,973 proteins in MII oocytes, and 2,082 proteins in zygotes through semiquantitative MS analysis. Furthermore, the results of the bioinformatics analysis indicated that different protein compositions are correlated with oocyte characteristics at different developmental stages. For example, specific transcription factors and chromatin remodeling factors are more abundant in MII oocytes, which may be crucial for the epigenetic reprogramming of sperm or somatic nuclei. These results provided important knowledge to better understand the molecular mechanisms in early development and may improve the generation of induced pluripotent stem cells.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/crescimento & desenvolvimento , Proteoma/genética , Zigoto/metabolismo , Animais , Biologia Computacional , DNA/metabolismo , Epigênese Genética/genética , Espectrometria de Massas , Camundongos , Oócitos/metabolismo , Proteômica/métodos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Hepatology ; 51(1): 329-35, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19877180

RESUMO

UNLABELLED: With the advent of induced pluripotent stem cell (iPSC) technology, it is now feasible to generate iPSCs with a defined genotype or disease state. When coupled with direct differentiation to a defined lineage, such as hepatic endoderm (HE), iPSCs would revolutionize the way we study human liver biology and generate efficient "off the shelf" models of human liver disease. Here, we show the "proof of concept" that iPSC lines representing both male and female sexes and two ethnic origins can be differentiated to HE at efficiencies of between 70%-90%, using a method mimicking physiological relevant condition. The iPSC-derived HE exhibited hepatic morphology and expressed the hepatic markers albumin and E-cadherin, as assessed by immunohistochemistry. They also expressed alpha-fetoprotein, hepatocyte nuclear factor-4a, and a metabolic marker, cytochrome P450 7A1 (Cyp7A1), demonstrating a definitive endodermal lineage differentiation. Furthermore, iPSC-derived hepatocytes produced and secreted the plasma proteins, fibrinogen, fibronectin, transthyretin, and alpha-fetoprotein, an essential feature for functional HE. Additionally iPSC-derived HE supported both CYP1A2 and CYP3A4 metabolism, which is essential for drug and toxicology testing. CONCLUSION: This work is first to demonstrate the efficient generation of hepatic endodermal lineage from human iPSCs that exhibits key attributes of hepatocytes, and the potential application of iPSC-derived HE in studying human liver biology. In particular, iPSCs from individuals representing highly polymorphic variants in metabolic genes and different ethnic groups will provide pharmaceutical development and toxicology studies a unique opportunity to revolutionize predictive drug toxicology assays and allow the creation of in vitro hepatic disease models.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Endoderma/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Linhagem da Célula , Feminino , Humanos , Masculino
8.
Mol Reprod Dev ; 78(10-11): 795-807, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21910153

RESUMO

Mammalian eggs await fertilisation while arrested at the second metaphase stage of meiotic division. A network of signalling pathways enables the establishment and maintenance of this metaphase-II arrest. In the absence of fertilisation, mammalian eggs can spontaneously exit metaphase II when parthenogenetically stimulated, or sometimes without any obvious stimulation. Ovulated rat eggs abortively release from metaphase-II arrest once removed from egg donors. Spontaneously activated rat eggs extrude the second polar body and proceed to the so-called metaphase III-'like' stage, with clumps of condensed chromatin scattered in the egg cytoplasm. It is still unclear what makes rat eggs susceptible to spontaneous activation; however, a vague picture of the signalling pathways involved in the process of spontaneous activation is beginning to emerge. Such cell cycle instability is one of the major reasons why it is more difficult to establish nuclear transfer in the rat. This review examines the known predisposing factors and biochemical mechanisms involved in spontaneous activation. The strategies used to prevent spontaneous metaphase-II release in rat eggs will also be discussed.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Meiose/fisiologia , Óvulo/fisiologia , Animais , Feminino , Meiose/genética , Metáfase/genética , Metáfase/fisiologia , Modelos Biológicos , Oogênese/genética , Oogênese/fisiologia , Óvulo/citologia , Óvulo/metabolismo , Partenogênese/genética , Partenogênese/fisiologia , Ratos , Fatores de Tempo
9.
Nat Cell Biol ; 5(6): 535-8, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12738962

RESUMO

Cultured primary cells exhibit a finite proliferative lifespan, termed the Hayflick limit. Cloning by nuclear transfer can reverse this cellular ageing process and can be accomplished with cultured cells nearing senescence. Here we describe nuclear transfer experiments in which donor cell lines at different ages and with different proliferative capacities were used to clone foetuses and animals from which new primary cell lines were generated. The rederived lines had the same proliferative capacity and rate of telomere shortening as the donor cell lines, suggesting that these are innate, genetically determined, properties that are conserved by nuclear transfer.


Assuntos
Senescência Celular/fisiologia , Clonagem Molecular/métodos , Animais , Animais Recém-Nascidos , Divisão Celular/fisiologia , Células Cultivadas , Fibroblastos/citologia , Longevidade , Ovinos , Telômero/fisiologia , Fatores de Tempo
10.
Mol Reprod Dev ; 76(5): 501-13, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18951375

RESUMO

Unlike the mouse embryo, where loss of DNA methylation in the embryonic nucleus leaves cleavage stage embryos globally hypomethylated, sheep preimplantation embryos retain high levels of methylation until the blastocyst stage. We have cloned and sequenced sheep Dnmt1 and found it to be highly conserved with both the human and mouse homologues. Furthermore, we observed that the transcript normally expressed in adult somatic tissues is highly abundant in sheep oocytes. Throughout sheep preimplantation development the protein is retained in the cytoplasm whereas Dnmt1 transcript production declines after the embryonic genome activation at the 8-16 cell stage. Attempts to clone oocyte-specific 5' regions of Dnmt1, known to be present in the mouse and human gene, were unsuccessful. However, a novel ovine Dnmt1 exon, theoretically encoding 13 amino acids, was found to be expressed in sheep oocytes, preimplantation embryos and early fetal lineages, but not in the adult tissue. RNAi-mediated knockdown of this novel transcript resulted in embryonic developmental arrest at the late morula stage, suggesting an essential role for this isoform in sheep blastocyst formation.


Assuntos
Blastocisto/enzimologia , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/enzimologia , Ovinos/embriologia , Animais , Clonagem Molecular , DNA Complementar , Éxons/genética , Fibroblastos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA