Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 632(8025): 622-629, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112696

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a severe, post-infectious sequela of SARS-CoV-2 infection1,2, yet the pathophysiological mechanism connecting the infection to the broad inflammatory syndrome remains unknown. Here we leveraged a large set of samples from patients with MIS-C to identify a distinct set of host proteins targeted by patient autoantibodies including a particular autoreactive epitope within SNX8, a protein involved in regulating an antiviral pathway associated with MIS-C pathogenesis. In parallel, we also probed antibody responses from patients with MIS-C to the complete SARS-CoV-2 proteome and found enriched reactivity against a distinct domain of the SARS-CoV-2 nucleocapsid protein. The immunogenic regions of the viral nucleocapsid and host SNX8 proteins bear remarkable sequence similarity. Consequently, we found that many children with anti-SNX8 autoantibodies also have cross-reactive T cells engaging both the SNX8 and the SARS-CoV-2 nucleocapsid protein epitopes. Together, these findings suggest that patients with MIS-C develop a characteristic immune response to the SARS-CoV-2 nucleocapsid protein that is associated with cross-reactivity to the self-protein SNX8, demonstrating a mechanistic link between the infection and the inflammatory syndrome, with implications for better understanding a range of post-infectious autoinflammatory diseases.


Assuntos
Anticorpos Antivirais , Autoanticorpos , COVID-19 , Reações Cruzadas , Epitopos , Mimetismo Molecular , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica , Criança , Humanos , Anticorpos Antivirais/imunologia , Autoanticorpos/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/complicações , Reações Cruzadas/imunologia , Epitopos/imunologia , Epitopos/química , Mimetismo Molecular/imunologia , Fosfoproteínas/química , Fosfoproteínas/imunologia , SARS-CoV-2/química , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Nexinas de Classificação/química , Nexinas de Classificação/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Síndrome de Resposta Inflamatória Sistêmica/virologia , Linfócitos T/imunologia
2.
Nature ; 603(7900): 321-327, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35073561

RESUMO

Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Animais , Linfócitos B , Moléculas de Adesão Celular Neurônio-Glia , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Camundongos , Proteínas do Tecido Nervoso
3.
Nature ; 591(7848): 124-130, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33494096

RESUMO

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals1-3, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)3 across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/fisiopatologia , Interferons/antagonistas & inibidores , Interferons/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Anticorpos Antivirais/sangue , Formação de Anticorpos , Sequência de Bases , COVID-19/sangue , COVID-19/virologia , Feminino , Humanos , Imunoglobulina G/imunologia , Interferons/metabolismo , Masculino , Neutrófilos/imunologia , Neutrófilos/patologia , Domínios Proteicos , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptor de Interferon alfa e beta/imunologia , Receptor de Interferon alfa e beta/metabolismo , Receptores de IgG/imunologia , Análise de Célula Única , Carga Viral/imunologia
4.
Proc Natl Acad Sci U S A ; 120(30): e2306572120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463205

RESUMO

Aquaporin-4 (AQP4)-specific Th17 cells are thought to have a central role in neuromyelitis optica (NMO) pathogenesis. When modeling NMO, only AQP4-reactive Th17 cells from AQP4-deficient (AQP4-/-), but not wild-type (WT) mice, caused CNS autoimmunity in recipient WT mice, indicating that a tightly regulated mechanism normally ensures tolerance to AQP4. Here, we found that pathogenic AQP4 T cell epitopes bind MHC II with exceptionally high affinity. Examination of T cell receptor (TCR) α/ß usage revealed that AQP4-specific T cells from AQP4-/- mice employed a distinct TCR repertoire and exhibited clonal expansion. Selective thymic AQP4 deficiency did not fully restore AQP4-reactive T cells, demonstrating that thymic negative selection alone did not account for AQP4-specific tolerance in WT mice. Indeed, AQP4-specific Th17 cells caused paralysis in recipient WT or B cell-deficient mice, which was followed by complete recovery that was associated with apoptosis of donor T cells. However, donor AQP4-reactive T cells survived and caused persistent paralysis in recipient mice deficient in both T and B cells or mice lacking T cells only. Thus, AQP4 CNS autoimmunity was limited by T cell-dependent deletion of AQP4-reactive T cells. In contrast, myelin oligodendrocyte glycoprotein (MOG)-specific T cells survived and caused sustained disease in WT mice. These findings underscore the importance of peripheral T cell deletional tolerance to AQP4, which may be relevant to understanding the balance of AQP4-reactive T cells in health and in NMO. T cell tolerance to AQP4, expressed in multiple tissues, is distinct from tolerance to MOG, an autoantigen restricted in its expression.


Assuntos
Autoimunidade , Neuromielite Óptica , Animais , Camundongos , Aquaporina 4/metabolismo , Autoanticorpos , Glicoproteína Mielina-Oligodendrócito , Paralisia , Receptores de Antígenos de Linfócitos T/metabolismo
5.
Am J Respir Cell Mol Biol ; 71(1): 43-52, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38767348

RESUMO

Mechanical ventilation contributes to the morbidity and mortality of patients in intensive care, likely through the exacerbation and dissemination of inflammation. Despite the proximity of the pleural cavity to the lungs and exposure to physical forces, little attention has been paid to its potential as an inflammatory source during ventilation. Here, we investigate the pleural cavity as a novel site of inflammation during ventilator-induced lung injury. Mice were subjected to low or high tidal volume ventilation strategies for up to 3 hours. Ventilation with a high tidal volume significantly increased cytokine and total protein levels in BAL and pleural lavage fluid. In contrast, acid aspiration, explored as an alternative model of injury, only promoted intraalveolar inflammation, with no effect on the pleural space. Resident pleural macrophages demonstrated enhanced activation after injurious ventilation, including upregulated ICAM-1 and IL-1ß expression, and the release of extracellular vesicles. In vivo ventilation and in vitro stretch of pleural mesothelial cells promoted ATP secretion, whereas purinergic receptor inhibition substantially attenuated extracellular vesicles and cytokine levels in the pleural space. Finally, labeled protein rapidly translocated from the pleural cavity into the circulation during high tidal volume ventilation, to a significantly greater extent than that of protein translocation from the alveolar space. Overall, we conclude that injurious ventilation induces pleural cavity inflammation mediated through purinergic pathway signaling and likely enhances the dissemination of mediators into the vasculature. This previously unidentified consequence of mechanical ventilation potentially implicates the pleural space as a focus of research and novel avenue for intervention in critical care.


Assuntos
Camundongos Endogâmicos C57BL , Cavidade Pleural , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Cavidade Pleural/metabolismo , Cavidade Pleural/patologia , Inflamação/patologia , Inflamação/metabolismo , Camundongos , Respiração Artificial/efeitos adversos , Volume de Ventilação Pulmonar , Macrófagos/metabolismo , Macrófagos/patologia , Trifosfato de Adenosina/metabolismo , Vesículas Extracelulares/metabolismo , Masculino , Citocinas/metabolismo , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Interleucina-1beta/metabolismo
6.
Ann Neurol ; 93(3): 615-628, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36443898

RESUMO

OBJECTIVE: Prospective studies of encephalitis are rare in regions where encephalitis is prevalent, such as low middle-income Southeast Asian countries. We compared the diagnostic yield of local and advanced tests in cases of pediatric encephalitis in Myanmar. METHODS: Children with suspected subacute or acute encephalitis at Yangon Children's Hospital, Yangon, Myanmar, were prospectively recruited from 2016-2018. Cohort 1 (n = 65) had locally available diagnostic testing, whereas cohort 2 (n = 38) had advanced tests for autoantibodies (ie, cell-based assays, tissue immunostaining, studies with cultured neurons) and infections (ie, BioFire FilmArray multiplex Meningitis/Encephalitis multiplex PCR panel, metagenomic sequencing, and pan-viral serologic testing [VirScan] of cerebrospinal fluid). RESULTS: A total of 20 cases (13 in cohort 1 and 7 in cohort 2) were found to have illnesses other than encephalitis. Of the 52 remaining cases in cohort 1, 43 (83%) had presumed infectious encephalitis, of which 2 cases (4%) had a confirmed infectious etiology. Nine cases (17%) had presumed autoimmune encephalitis. Of the 31 cases in cohort 2, 23 (74%) had presumed infectious encephalitis, of which one (3%) had confirmed infectious etiology using local tests only, whereas 8 (26%) had presumed autoimmune encephalitis. Advanced tests confirmed an additional 10 (32%) infections, 4 (13%) possible infections, and 5 (16%) cases of N-methyl-D-aspartate receptor antibody encephalitis. INTERPRETATION: Pediatric encephalitis is prevalent in Myanmar, and advanced technologies increase identification of treatable infectious and autoimmune causes. Developing affordable advanced tests to use globally represents a high clinical and research priority to improve the diagnosis and prognosis of encephalitis. ANN NEUROL 2023;93:615-628.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Doenças Transmissíveis , Encefalite , Encefalite Infecciosa , Meningite , Criança , Humanos , Meningite/líquido cefalorraquidiano , Meningite/diagnóstico , Estudos Prospectivos , Mianmar , Encefalite/líquido cefalorraquidiano
7.
Ann Neurol ; 94(6): 1086-1101, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37632288

RESUMO

OBJECTIVE: Co-occurring anti-tripartite motif-containing protein 9 and 67 autoantibodies (TRIM9/67-IgG) have been reported in only a very few cases of paraneoplastic cerebellar syndrome. The value of these biomarkers and the most sensitive methods of TRIM9/67-IgG detection are not known. METHODS: We performed a retrospective, multicenter study to evaluate the cerebrospinal fluid and serum of candidate TRIM9/67-IgG cases by tissue-based immunofluorescence, peptide phage display immunoprecipitation sequencing, overexpression cell-based assay (CBA), and immunoblot. Cases in which TRIM9/67-IgG was detected by at least 2 assays were considered TRIM9/67-IgG positive. RESULTS: Among these cases (n = 13), CBA was the most sensitive (100%) and revealed that all cases had TRIM9 and TRIM67 autoantibodies. Of TRIM9/67-IgG cases with available clinical history, a subacute cerebellar syndrome was the most common presentation (n = 7/10), followed by encephalitis (n = 3/10). Of these 10 patients, 70% had comorbid cancer (7/10), 85% of whom (n = 6/7) had confirmed metastatic disease. All evaluable cancer biopsies expressed TRIM9 protein (n = 5/5), whose expression was elevated in the cancerous regions of the tissue in 4 of 5 cases. INTERPRETATION: TRIM9/67-IgG is a rare but likely high-risk paraneoplastic biomarker for which CBA appears to be the most sensitive diagnostic assay. ANN NEUROL 2023;94:1086-1101.


Assuntos
Proteínas do Tecido Nervoso , Degeneração Paraneoplásica Cerebelar , Humanos , Estudos Retrospectivos , Proteínas do Tecido Nervoso/metabolismo , Biomarcadores/líquido cefalorraquidiano , Autoanticorpos/líquido cefalorraquidiano , Imunoglobulina G
8.
Brain ; 146(3): 968-976, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181424

RESUMO

The aetiology of nodding syndrome remains unclear, and comprehensive genotyping and phenotyping data from patients remain sparse. Our objectives were to characterize the phenotype of patients with nodding syndrome, investigate potential contributors to disease aetiology, and evaluate response to immunotherapy. This cohort study investigated members of a single-family unit from Lamwo District, Uganda. The participants for this study were selected by the Ugandan Ministry of Health as representative for nodding syndrome and with a conducive family structure for genomic analyses. Of the eight family members who participated in the study at the National Institutes of Health (NIH) Clinical Center, three had nodding syndrome. The three affected patients were extensively evaluated with metagenomic sequencing for infectious pathogens, exome sequencing, spinal fluid immune analyses, neurometabolic and toxicology testing, continuous electroencephalography and neuroimaging. Five unaffected family members underwent a subset of testing for comparison. A distinctive interictal pattern of sleep-activated bursts of generalized and multifocal epileptiform discharges and slowing was observed in two patients. Brain imaging showed two patients had mild generalized cerebral atrophy, and both patients and unaffected family members had excessive metal deposition in the basal ganglia. Trace metal biochemical evaluation was normal. CSF was non-inflammatory and one patient had CSF-restricted oligoclonal bands. Onchocerca volvulus-specific antibodies were present in all patients and skin snips were negative for active onchocerciasis. Metagenomic sequencing of serum and CSF revealed hepatitis B virus in the serum of one patient. Vitamin B6 metabolites were borderline low in all family members and CSF pyridoxine metabolites were normal. Mitochondrial DNA testing was normal. Exome sequencing did not identify potentially causal candidate gene variants. Nodding syndrome is characterized by a distinctive pattern of sleep-activated epileptiform activity. The associated growth stunting may be due to hypothalamic dysfunction. Extensive testing years after disease onset did not clarify a causal aetiology. A trial of immunomodulation (plasmapheresis in two patients and intravenous immunoglobulin in one patient) was given without short-term effect, but longer-term follow-up was not possible to fully assess any benefit of this intervention.


Assuntos
Síndrome do Cabeceio , Oncocercose , Estados Unidos , Humanos , Estudos de Coortes , Imunomodulação , Genômica
9.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911760

RESUMO

Epigenetic changes have been consistently detected in different cell types in multiple sclerosis (MS). However, their contribution to MS pathogenesis remains poorly understood partly because of sample heterogeneity and limited coverage of array-based methods. To fill this gap, we conducted a comprehensive analysis of genome-wide DNA methylation patterns in four peripheral immune cell populations isolated from 29 MS patients at clinical disease onset and 24 healthy controls. We show that B cells from new-onset untreated MS cases display more significant methylation changes than other disease-implicated immune cell types, consisting of a global DNA hypomethylation signature. Importantly, 4,933 MS-associated differentially methylated regions in B cells were identified, and this epigenetic signature underlies specific genetic programs involved in B cell differentiation and activation. Integration of the methylome to changes in gene expression and susceptibility-associated regions further indicates that hypomethylated regions are significantly associated with the up-regulation of cell activation transcriptional programs. Altogether, these findings implicate aberrant B cell function in MS etiology.


Assuntos
Linfócitos B/metabolismo , Ativação Linfocitária , Esclerose Múltipla/metabolismo , Linfócitos B/patologia , Diferenciação Celular , Metilação de DNA , Epigênese Genética , Epigenômica , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Ativação Transcricional
10.
J Infect Dis ; 227(2): 246-250, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089700

RESUMO

Interferon (IFN)-specific autoantibodies have been implicated in severe coronavirus disease 2019 (COVID-19) and have been proposed as a potential driver of the persistent symptoms characterizing "long COVID," a type of postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We report that only 2 of 215 participants with convalescent SARS-CoV-2 infection tested over 394 time points, including 121 people experiencing long COVID symptoms, had detectable IFN-α2 antibodies. Both had been hospitalized during the acute phase of the infection. These data suggest that persistent anti-IFN antibodies, although a potential driver of severe COVID-19, are unlikely to contribute to long COVID symptoms in the postacute phase of the infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Interferon-alfa , Síndrome de COVID-19 Pós-Aguda , Autoanticorpos , Prevalência
11.
Clin Infect Dis ; 76(6): 1080-1087, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36303432

RESUMO

BACKGROUND: Cryptococcal meningitis is a common cause of AIDS-related mortality. Although symptom recurrence after initial treatment is common, the etiology is often difficult to decipher. We sought to summarize characteristics, etiologies, and outcomes among persons with second-episode symptomatic recurrence. METHODS: We prospectively enrolled Ugandans with cryptococcal meningitis and obtained patient characteristics, antiretroviral therapy (ART) and cryptococcosis histories, clinical outcomes, and cerebrospinal fluid (CSF) analysis results. We independently adjudicated cases of second-episode meningitis to categorize patients as (1) microbiological relapse, (2) paradoxical immune reconstitution inflammatory syndrome (IRIS), (3) persistent elevated intracranial pressure (ICP) only, or (4) persistent symptoms only, along with controls of primary cryptococcal meningitis. We compared groups with chi-square or Kruskal-Wallis tests as appropriate. RESULTS: 724 participants were included (n = 607 primary episode, 81 relapse, 28 paradoxical IRIS, 2 persistently elevated ICP, 6 persistent symptoms). Participants with culture-positive relapse had lower CD4 (25 cells/µL; IQR: 9-76) and lower CSF white blood cell (WBC; 4 cells/µL; IQR: 4-85) counts than paradoxical IRIS (CD4: 78 cells/µL; IQR: 47-142; WBC: 45 cells/µL; IQR: 8-128). Among those with CSF WBC <5 cells/µL, 86% (43/50) had relapse. Among those with CD4 counts <50 cells/µL, 91% (39/43) had relapse. Eighteen-week mortality (from current symptom onset) was 47% among first episodes of cryptococcal meningitis, 31% in culture-positive relapses, and 14% in paradoxical IRIS. CONCLUSIONS: Poor immune reconstitution was noted more often in relapse than IRIS as evidenced by lower CSF WBC and blood CD4 counts. These easily obtained laboratory values should prompt initiation of antifungal treatment while awaiting culture results. CLINICAL TRIALS REGISTRATION: NCT01802385.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS , Infecções por HIV , Meningite Criptocócica , Humanos , Meningite Criptocócica/diagnóstico , Meningite Criptocócica/tratamento farmacológico , Infecções Oportunistas Relacionadas com a AIDS/tratamento farmacológico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Antifúngicos/uso terapêutico , Recidiva
12.
Clin Infect Dis ; 76(3): e1320-e1327, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883256

RESUMO

BACKGROUND: Cache Valley virus (CVV) is a mosquito-borne virus that is a rare cause of disease in humans. In the fall of 2020, a patient developed encephalitis 6 weeks following kidney transplantation and receipt of multiple blood transfusions. METHODS: After ruling out more common etiologies, metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) was performed. We reviewed the medical histories of the index kidney recipient, organ donor, and recipients of other organs from the same donor and conducted a blood traceback investigation to evaluate blood transfusion as a possible source of infection in the kidney recipient. We tested patient specimens using reverse-transcription polymerase chain reaction (RT-PCR), the plaque reduction neutralization test, cell culture, and whole-genome sequencing. RESULTS: CVV was detected in CSF from the index patient by mNGS, and this result was confirmed by RT-PCR, viral culture, and additional whole-genome sequencing. The organ donor and other organ recipients had no evidence of infection with CVV by molecular or serologic testing. Neutralizing antibodies against CVV were detected in serum from a donor of red blood cells received by the index patient immediately prior to transplant. CVV neutralizing antibodies were also detected in serum from a patient who received the co-component plasma from the same blood donation. CONCLUSIONS: Our investigation demonstrates probable CVV transmission through blood transfusion. Clinicians should consider arboviral infections in unexplained meningoencephalitis after blood transfusion or organ transplantation. The use of mNGS might facilitate detection of rare, unexpected infections, particularly in immunocompromised patients.


Assuntos
Vírus Bunyamwera , Transplante de Rim , Meningoencefalite , Humanos , Anticorpos Neutralizantes , Transfusão de Sangue , Transplante de Rim/efeitos adversos , Meningoencefalite/diagnóstico
13.
Emerg Infect Dis ; 29(1): 197-201, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573629

RESUMO

A patient in California, USA, with rare and usually fatal Balamuthia mandrillaris granulomatous amebic encephalitis survived after receiving treatment with a regimen that included the repurposed drug nitroxoline. Nitroxoline, which is a quinolone typically used to treat urinary tract infections, was identified in a screen for drugs with amebicidal activity against Balamuthia.


Assuntos
Amebíase , Balamuthia mandrillaris , Encefalite Infecciosa , Humanos , Amebíase/tratamento farmacológico , Granuloma , Encéfalo
14.
Ann Neurol ; 92(6): 1090-1101, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36053822

RESUMO

BACKGROUND AND OBJECTIVES: We sought to determine clinical significance of neuronal septin autoimmunity and evaluate for potential IgG effects. METHODS: Septin-IgGs were detected by indirect immunofluorescence assays (IFAs; mouse tissue and cell based) or Western blot. IgG binding to (and internalization of) extracellular septin epitopes were evaluated for by live rat hippocampal neuron assay. The impact of purified patient IgGs on murine cortical neuron function was determined by recording extracellular field potentials in a multielectrode array platform. RESULTS: Septin-IgGs were identified in 23 patients. All 8 patients with septin-5-IgG detected had cerebellar ataxia, and 7 had prominent eye movement disorders. One of 2 patients with co-existing septin-7-IgG had additional psychiatric phenotype (apathy, emotional blunting, and poor insight). Fifteen patients had septin-7 autoimmunity, without septin-5-IgG detected. Disorders included encephalopathy (11; 2 patients with accompanying myelopathy, and 2 were relapsing), myelopathy (3), and episodic ataxia (1). Psychiatric symptoms (≥1 of agitation, apathy, catatonia, disorganized thinking, and paranoia) were prominent in 6 of 11 patients with encephalopathic symptoms. Eight of 10 patients with data available (from 23 total) improved after immunotherapy, and a further 2 patients improved spontaneously. Staining of plasma membranes of live hippocampal neurons produced by patient IgGs (subclasses 1 and 2) colocalized with pre- and post-synaptic markers. Decreased spiking and bursting behavior in mixed cultures of murine glutamatergic and GABAergic cortical neurons produced by patient IgGs were attributable to neither antigenic crosslinking and internalization nor complement activation. INTERPRETATION: Septin-IgGs are predictive of distinct treatment-responsive autoimmune central nervous system (CNS) disorders. Live neuron binding and induced electrophysiologic effects by patient IgGs may support septin-specific pathophysiology. ANN NEUROL 2022;92:1090-1101.


Assuntos
Encefalopatias , Doenças da Medula Espinal , Animais , Ratos , Camundongos , Septinas/metabolismo , Autoimunidade , Neurônios/metabolismo , Imunoglobulina G/metabolismo
15.
Ann Neurol ; 92(2): 279-291, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35466441

RESUMO

OBJECTIVE: Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation and Autonomic Dysregulation (ROHHAD), is a severe pediatric disorder of uncertain etiology resulting in hypothalamic dysfunction and frequent sudden death. Frequent co-occurrence of neuroblastic tumors have fueled suspicion of an autoimmune paraneoplastic neurological syndrome (PNS); however, specific anti-neural autoantibodies, a hallmark of PNS, have not been identified. Our objective is to determine if an autoimmune paraneoplastic etiology underlies ROHHAD. METHODS: Immunoglobulin G (IgG) from pediatric ROHHAD patients (n = 9), non-inflammatory individuals (n = 100) and relevant pediatric controls (n = 25) was screened using a programmable phage display of the human peptidome (PhIP-Seq). Putative ROHHAD-specific autoantibodies were orthogonally validated using radioactive ligand binding and cell-based assays. Expression of autoantibody targets in ROHHAD tumor and healthy brain tissue was assessed with immunohistochemistry and mass spectrometry, respectively. RESULTS: Autoantibodies to ZSCAN1 were detected in ROHHAD patients by PhIP-Seq and orthogonally validated in 7/9 ROHHAD patients and 0/125 controls using radioactive ligand binding and cell-based assays. Expression of ZSCAN1 in ROHHAD tumor and healthy human brain tissue was confirmed. INTERPRETATION: Our results support the notion that tumor-associated ROHHAD syndrome is a pediatric PNS, potentially initiated by an immune response to peripheral neuroblastic tumor. ZSCAN1 autoantibodies may aid in earlier, accurate diagnosis of ROHHAD syndrome, thus providing a means toward early detection and treatment. This work warrants follow-up studies to test sensitivity and specificity of a novel diagnostic test. Last, given the absence of the ZSCAN1 gene in rodents, our study highlights the value of human-based approaches for detecting novel PNS subtypes. ANN NEUROL 2022;92:279-291.


Assuntos
Doenças do Sistema Nervoso Autônomo , Doenças do Sistema Endócrino , Doenças Hipotalâmicas , Síndromes Paraneoplásicas do Sistema Nervoso , Autoanticorpos , Criança , Humanos , Doenças Hipotalâmicas/genética , Hipoventilação/genética , Ligantes , Síndromes Paraneoplásicas do Sistema Nervoso/diagnóstico , Síndrome
16.
Ann Neurol ; 91(2): 268-281, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34878197

RESUMO

OBJECTIVE: A major challenge in multiple sclerosis (MS) research is the understanding of silent progression and Progressive MS. Using a novel method to accurately capture upper cervical cord area from legacy brain MRI scans we aimed to study the role of spinal cord and brain atrophy for silent progression and conversion to secondary progressive disease (SPMS). METHODS: From a single-center observational study, all RRMS (n = 360) and SPMS (n = 47) patients and 80 matched controls were evaluated. RRMS patient subsets who converted to SPMS (n = 54) or silently progressed (n = 159), respectively, during the 12-year observation period were compared to clinically matched RRMS patients remaining RRMS (n = 54) or stable (n = 147), respectively. From brain MRI, we assessed the value of brain and spinal cord measures to predict silent progression and SPMS conversion. RESULTS: Patients who developed SPMS showed faster cord atrophy rates (-2.19%/yr) at least 4 years before conversion compared to their RRMS matches (-0.88%/yr, p < 0.001). Spinal cord atrophy rates decelerated after conversion (-1.63%/yr, p = 0.010) towards those of SPMS patients from study entry (-1.04%). Each 1% faster spinal cord atrophy rate was associated with 69% (p < 0.0001) and 53% (p < 0.0001) shorter time to silent progression and SPMS conversion, respectively. INTERPRETATION: Silent progression and conversion to secondary progressive disease are predominantly related to cervical cord atrophy. This atrophy is often present from the earliest disease stages and predicts the speed of silent progression and conversion to Progressive MS. Diagnosis of SPMS is rather a late recognition of this neurodegenerative process than a distinct disease phase. ANN NEUROL 2022;91:268-281.


Assuntos
Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Medula Espinal/patologia , Adulto , Atrofia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Progressão da Doença , Feminino , Forame Magno/diagnóstico por imagem , Forame Magno/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Medula Espinal/diagnóstico por imagem
17.
Epilepsia ; 64(6): 1444-1457, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37039049

RESUMO

New onset refractory status epilepticus (NORSE), including its subtype with a preceding febrile illness known as febrile infection-related epilepsy syndrome (FIRES), is one of the most severe forms of status epilepticus. The exact causes of NORSE are currently unknown, and there is so far no disease-specific therapy. Identifying the underlying pathophysiology and discovering specific biomarkers, whether immunologic, infectious, genetic, or other, may help physicians in the management of patients with NORSE. A broad spectrum of biomarkers has been proposed for status epilepticus patients, some of which were evaluated for patients with NORSE. Nonetheless, none has been validated, due to significant variabilities in study cohorts, collected biospecimens, applied analytical methods, and defined outcome endpoints, and to small sample sizes. The NORSE Institute established an open NORSE/FIRES biorepository for health-related data and biological samples allowing the collection of biospecimens worldwide, promoting multicenter research and sharing of data and specimens. Here, we suggest standard operating procedures for biospecimen collection and biobanking in this rare condition. We also propose criteria for the appropriate use of previously collected biospecimens. We predict that the widespread use of standardized procedures will reduce heterogeneity, facilitate the future identification of validated biomarkers for NORSE, and provide a better understanding of the pathophysiology and best clinical management for these patients.


Assuntos
Epilepsia Resistente a Medicamentos , Encefalite , Estado Epiléptico , Humanos , Bancos de Espécimes Biológicos , Estado Epiléptico/tratamento farmacológico , Convulsões/complicações , Epilepsia Resistente a Medicamentos/terapia , Encefalite/complicações , Biomarcadores
18.
J Immunol ; 207(8): 2005-2014, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34544801

RESUMO

Elevated N-linked glycosylation of IgG V regions (IgG-VN-Glyc) is an emerging molecular phenotype associated with autoimmune disorders. To test the broader specificity of elevated IgG-VN-Glyc, we studied patients with distinct subtypes of myasthenia gravis (MG), a B cell-mediated autoimmune disease. Our experimental design focused on examining the B cell repertoire and total IgG. It specifically included adaptive immune receptor repertoire sequencing to quantify and characterize N-linked glycosylation sites in the circulating BCR repertoire, proteomics to examine glycosylation patterns of the total circulating IgG, and an exploration of human-derived recombinant autoantibodies, which were studied with mass spectrometry and Ag binding assays to respectively confirm occupation of glycosylation sites and determine whether they alter binding. We found that the frequency of IgG-VN-Glyc motifs was increased in the total BCR repertoire of patients with MG when compared with healthy donors. The elevated frequency was attributed to both biased V gene segment usage and somatic hypermutation. IgG-VN-Glyc could be observed in the total circulating IgG in a subset of patients with MG. Autoantigen binding, by four patient-derived MG autoantigen-specific mAbs with experimentally confirmed presence of IgG-VN-Glyc, was not altered by the glycosylation. Our findings extend prior work on patterns of Ig V region N-linked glycosylation in autoimmunity to MG subtypes.


Assuntos
Autoanticorpos/metabolismo , Linfócitos B/imunologia , Imunoglobulina G/metabolismo , Região Variável de Imunoglobulina/metabolismo , Miastenia Gravis/metabolismo , Adulto , Idoso , Feminino , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/diagnóstico , Fenótipo , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Adulto Jovem
19.
Proc Natl Acad Sci U S A ; 117(37): 22932-22943, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859762

RESUMO

Central nervous system B cells have several potential roles in multiple sclerosis (MS): secretors of proinflammatory cytokines and chemokines, presenters of autoantigens to T cells, producers of pathogenic antibodies, and reservoirs for viruses that trigger demyelination. To interrogate these roles, single-cell RNA sequencing (scRNA-Seq) was performed on paired cerebrospinal fluid (CSF) and blood from subjects with relapsing-remitting MS (RRMS; n = 12), other neurologic diseases (ONDs; n = 1), and healthy controls (HCs; n = 3). Single-cell immunoglobulin sequencing (scIg-Seq) was performed on a subset of these subjects and additional RRMS (n = 4), clinically isolated syndrome (n = 2), and OND (n = 2) subjects. Further, paired CSF and blood B cell subsets (RRMS; n = 7) were isolated using fluorescence activated cell sorting for bulk RNA sequencing (RNA-Seq). Independent analyses across technologies demonstrated that nuclear factor kappa B (NF-κB) and cholesterol biosynthesis pathways were activated, and specific cytokine and chemokine receptors were up-regulated in CSF memory B cells. Further, SMAD/TGF-ß1 signaling was down-regulated in CSF plasmablasts/plasma cells. Clonally expanded, somatically hypermutated IgM+ and IgG1+ CSF B cells were associated with inflammation, blood-brain barrier breakdown, and intrathecal Ig synthesis. While we identified memory B cells and plasmablast/plasma cells with highly similar Ig heavy-chain sequences across MS subjects, similarities were also identified with ONDs and HCs. No viral transcripts, including from Epstein-Barr virus, were detected. Our findings support the hypothesis that in MS, CSF B cells are driven to an inflammatory and clonally expanded memory and plasmablast/plasma cell phenotype.


Assuntos
Linfócitos B/imunologia , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Adulto , Linfócitos B/metabolismo , Sistema Nervoso Central/imunologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imunoglobulina G/metabolismo , Cadeias Pesadas de Imunoglobulinas/metabolismo , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Transcriptoma
20.
N Engl J Med ; 381(1): 47-54, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31269365

RESUMO

A 37-year-old man with a history of seminoma presented with vertigo, ataxia, and diplopia. An autoantibody specific for kelch-like protein 11 (KLHL11) was identified with the use of programmable phage display. Immunoassays were used to identify KLHL11 IgG in 12 other men with similar neurologic features and testicular disease. Immunostaining of the patient's IgG on mouse brain tissue showed sparse but distinctive points of staining in multiple brain regions, with enrichment in perivascular and perimeningeal tissues. The onset of the neurologic syndrome preceded the diagnosis of seminoma in 9 of the 13 patients. An age-adjusted estimate of the prevalence of autoimmune KLHL11 encephalitis in Olmsted County, Minnesota, was 2.79 cases per 100,000 men. (Funded by the Rochester Epidemiology Project and others.).


Assuntos
Autoanticorpos/análise , Encéfalo/imunologia , Proteínas de Transporte/imunologia , Técnicas de Visualização da Superfície Celular , Encefalite/imunologia , Doença de Hashimoto/imunologia , Síndromes Paraneoplásicas do Sistema Nervoso/imunologia , Seminoma/complicações , Neoplasias Testiculares/complicações , Adulto , Idoso , Encefalite/epidemiologia , Doença de Hashimoto/epidemiologia , Humanos , Imunoensaio , Masculino , Pessoa de Meia-Idade , Minnesota/epidemiologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA