RESUMO
During gene expression, RNA export factors are mainly known for driving nucleo-cytoplasmic transport. While early studies suggested that the exon junction complex (EJC) provides a binding platform for them, subsequent work proposed that they are only recruited by the cap binding complex to the 5' end of RNAs, as part of TREX. Using iCLIP, we show that the export receptor Nxf1 and two TREX subunits, Alyref and Chtop, are recruited to the whole mRNA co-transcriptionally via splicing but before 3' end processing. Consequently, Alyref alters splicing decisions and Chtop regulates alternative polyadenylation. Alyref is recruited to the 5' end of RNAs by CBC, and our data reveal subsequent binding to RNAs near EJCs. We demonstrate that eIF4A3 stimulates Alyref deposition not only on spliced RNAs close to EJC sites but also on single-exon transcripts. Our study reveals mechanistic insights into the co-transcriptional recruitment of mRNA export factors and how this shapes the human transcriptome.
Assuntos
RNA Helicases DEAD-box/genética , Fator de Iniciação 4A em Eucariotos/genética , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Transcrição Gênica , Transporte Ativo do Núcleo Celular/genética , Sítios de Ligação , RNA Helicases DEAD-box/química , Fator de Iniciação 4A em Eucariotos/química , Éxons/genética , Regulação da Expressão Gênica/genética , Humanos , Proteínas Nucleares/química , Proteínas de Transporte Nucleocitoplasmático/química , Poliadenilação , Transporte de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/química , Fatores de Transcrição/química , Transcriptoma/genéticaRESUMO
The conserved TREX mRNA export complex is known to contain UAP56, Aly, Tex1, and the THO complex. Here, we carried out proteomic analysis of immunopurified human TREX complex and identified the protein CIP29 as the only new component with a clear yeast relative (known as Tho1). Tho1 is known to function in mRNA export, and we provide evidence that CIP29 likewise functions in this process. Like the known TREX components, a portion of CIP29 localizes in nuclear speckle domains, and its efficient recruitment to mRNA is both splicing- and cap-dependent. We show that UAP56 mediates an ATP-dependent interaction between the THO complex and both CIP29 and Aly, indicating that TREX assembly is ATP-dependent. Using recombinant proteins expressed in Escherichia coli, we show that UAP56, Aly, and CIP29 form an ATP-dependent trimeric complex, and UAP56 bridges the interaction between CIP29 and Aly. We conclude that the interaction of two conserved export proteins, CIP29 and Aly, with UAP56 is strictly regulated by ATP during assembly of the TREX complex.
Assuntos
Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células COS , Proteínas de Ciclo Celular/metabolismo , Chlorocebus aethiops , RNA Helicases DEAD-box/genética , Exodesoxirribonucleases/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/genética , Processamento Pós-Transcricional do RNA/fisiologia , Transporte de RNARESUMO
The TREX complex couples nuclear pre-mRNA processing with mRNA export and contains multiple protein components, including Uap56, Alyref, Cip29 and the multi-subunit THO complex. Here, we have identified Chtop as a novel TREX component. We show that both Chtop and Alyref activate the ATPase and RNA helicase activities of Uap56 and that Uap56 functions to recruit both Alyref and Chtop onto mRNA. As observed with the THO complex subunit Thoc5, Chtop binds to the NTF2-like domain of Nxf1, and this interaction requires arginine methylation of Chtop. Using RNAi, we show that co-knockdown of Alyref and Chtop results in a potent mRNA export block. Chtop binds to Uap56 in a mutually exclusive manner with Alyref, and Chtop binds to Nxf1 in a mutually exclusive manner with Thoc5. However, Chtop, Thoc5 and Nxf1 exist in a single complex in vivo. Together, our data indicate that TREX and Nxf1 undergo dynamic remodelling, driven by the ATPase cycle of Uap56 and post-translational modifications of Chtop.
Assuntos
Exodesoxirribonucleases/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Western Blotting , RNA Helicases DEAD-box/metabolismo , Metilação de DNA , Primers do DNA/genética , Teste de Complementação Genética , Humanos , Hibridização in Situ Fluorescente , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genéticaRESUMO
Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-binding protein-associated-splicing factor (PSF) and its binding partner non-POU domain-containing octamer-binding protein (NONO/p54nrb), are highly abundant, multifunctional nuclear proteins. However, the exact role of this complex is yet to be determined. Following purification of the endogeneous SFPQ/NONO complex, mass spectrometry analysis identified a wide range of interacting proteins, including those involved in RNA processing, RNA splicing, and transcriptional regulation, consistent with a multifunctional role for SFPQ/NONO. In addition, we have identified several sites of arginine methylation in SFPQ/PSF using mass spectrometry and found that several arginines in the N-terminal domain of SFPQ/PSF are asymmetrically dimethylated. Furthermore, we find that the protein arginine N-methyltransferase, PRMT1, catalyzes this methylation in vitro and that this is antagonized by citrullination of SFPQ. Arginine methylation and citrullination of SFPQ/PSF does not affect complex formation with NONO. However, arginine methylation was shown to increase the association with mRNA in mRNP complexes in mammalian cells. Finally we show that the biochemical properties of the endogenous complex from cell lysates are significantly influenced by the ionic strength during purification. At low ionic strength, the SFPQ/NONO complex forms large heterogeneous protein assemblies or aggregates, preventing the purification of the SFPQ/NONO complex. The ability of the SFPQ/NONO complex to form varying protein assemblies, in conjunction with the effect of post-translational modifications of SFPQ modulating mRNA binding, suggests key roles affecting mRNP dynamics within the cell.
Assuntos
Proteínas Associadas à Matriz Nuclear/genética , Fatores de Transcrição de Octâmero/genética , Splicing de RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Transcrição Gênica , Animais , Arginina/genética , Arginina/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Células HeLa , Humanos , Metilação , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteínas Associadas à Matriz Nuclear/química , Fatores de Transcrição de Octâmero/química , Fator de Processamento Associado a PTB , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/genética , Proteínas de Ligação a RNA/química , Proteínas Repressoras/genética , Ribonucleoproteínas/genéticaRESUMO
TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems.
Assuntos
Expressão Gênica , Fatores de Transcrição/fisiologia , Transporte Biológico , Dano ao DNA , Humanos , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Cancer testis antigens (CTAs) represented a poorly characterized group of proteins whose expression is normally restricted to testis but are frequently up-regulated in cancer cells. Here we show that one CTA, Luzp4, is an mRNA export adaptor. It associates with the TREX mRNA export complex subunit Uap56 and harbours a Uap56 binding motif, conserved in other mRNA export adaptors. Luzp4 binds the principal mRNA export receptor Nxf1, enhances its RNA binding activity and complements Alyref knockdown in vivo. Whilst Luzp4 is up-regulated in a range of tumours, it appears preferentially expressed in melanoma cells where it is required for growth.
Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Melanoma/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Antígenos de Neoplasias/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Melanoma/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte de RNA , Proteínas de Ligação a RNA/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidoresRESUMO
The essential herpesvirus adaptor protein HVS ORF57, which has homologs in all other herpesviruses, promotes viral mRNA export by utilizing the cellular mRNA export machinery. ORF57 protein specifically recognizes viral mRNA transcripts, and binds to proteins of the cellular transcription-export (TREX) complex, in particular ALYREF. This interaction introduces viral mRNA to the NXF1 pathway, subsequently directing it to the nuclear pore for export to the cytoplasm. Here we have used a range of techniques to reveal the sites for direct contact between RNA and ORF57 in the absence and presence of ALYREF. A binding site within ORF57 was characterized which recognizes specific viral mRNA motifs. When ALYREF is present, part of this ORF57 RNA binding site, composed of an α-helix, binds preferentially to ALYREF. This competitively displaces viral RNA from the α-helix, but contact with RNA is still maintained by a flanking region. At the same time, the flexible N-terminal domain of ALYREF comes into contact with the viral RNA, which becomes engaged in an extensive network of synergistic interactions with both ALYREF and ORF57. Transfer of RNA to ALYREF in the ternary complex, and involvement of individual ORF57 residues in RNA recognition, were confirmed by UV cross-linking and mutagenesis. The atomic-resolution structure of the ORF57-ALYREF interface was determined, which noticeably differed from the homologous ICP27-ALYREF structure. Together, the data provides the first site-specific description of how viral mRNA is locked by a herpes viral adaptor protein in complex with cellular ALYREF, giving herpesvirus access to the cellular mRNA export machinery. The NMR strategy used may be more generally applicable to the study of fuzzy protein-protein-RNA complexes which involve flexible polypeptide regions.
Assuntos
Infecções por Herpesviridae/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Proteínas Nucleares/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Infecções Tumorais por Vírus/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Herpesvirus Saimiriíneo 2/química , Herpesvirus Saimiriíneo 2/metabolismo , Herpesvirus Saimiriíneo 2/patogenicidade , Humanos , Proteínas Nucleares/química , Estrutura Quaternária de Proteína , Transporte de RNA/fisiologia , RNA Viral/análise , Proteínas de Ligação a RNA/química , Proteínas Repressoras/química , Transativadores/química , Fatores de Transcrição/químicaRESUMO
Candida albicans hyphae grow in a highly polarized fashion from their tips. This polarized growth requires the continuous delivery of secretory vesicles to the tip region. Vesicle delivery depends on Sec2p, the Guanine Exchange Factor (GEF) for the Rab GTPase Sec4p. GTP bound Sec4p is required for the transit of secretory vesicles from the trans-Golgi to sites of polarized growth. We previously showed that phosphorylation of Sec2p at residue S584 was necessary for Sec2p to support hyphal, but not yeast growth. Here we show that on secretory vesicles SEC2 mRNA is physically associated with Sec2p. Moreover, we show that the phosphorylation of S584 allows SEC2 mRNA to dissociate from Sec2p and we speculate that this is necessary for Sec2p function and/or translation. During hyphal extension, the growing tip may be separated from the nucleus by up to 15 µm. Transport of SEC2 mRNA on secretory vesicles to the tip localizes SEC2 translation to tip allowing a sufficient accumulation of this key protein at the site of polarized growth.
Assuntos
Candida albicans/química , Proteínas Fúngicas/análise , Hifas/química , RNA Mensageiro/análise , Vesículas Secretórias/química , Candida albicans/crescimento & desenvolvimento , Hifas/crescimento & desenvolvimento , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-TraducionalRESUMO
GGGGCC repeat expansions of C9orf72 represent the most common genetic variant of amyotrophic lateral sclerosis and frontotemporal degeneration, but the mechanism of pathogenesis is unclear. Recent reports have suggested that the transcribed repeat might form toxic RNA foci that sequester various RNA processing proteins. Consensus as to the identity of the binding partners is missing and whole neuronal proteome investigation is needed. Using RNA fluorescence in situ hybridization we first identified nuclear and cytoplasmic RNA foci in peripheral and central nervous system biosamples from patients with amyotrophic lateral sclerosis with a repeat expansion of C9orf72 (C9orf72+), but not from those patients without a repeat expansion of C9orf72 (C9orf72-) or control subjects. Moreover, in the cases examined, the distribution of foci-positive neurons correlated with the clinical phenotype (t-test P < 0.05). As expected, RNA foci are ablated by RNase treatment. Interestingly, we identified foci in fibroblasts from an asymptomatic C9orf72+ carrier. We next performed pulldown assays, with GGGGCC5, in conjunction with mass spectrometry analysis, to identify candidate binding partners of the GGGGCC repeat expansion. Proteins containing RNA recognition motifs and involved in splicing, messenger RNA nuclear export and/or translation were significantly enriched. Immunohistochemistry in central nervous system tissue from C9orf72+ patients with amyotrophic lateral sclerosis demonstrated co-localization of RNA foci with SRSF2, hnRNP H1/F, ALYREF and hnRNP A1 in cerebellar granule cells and with SRSF2, hnRNP H1/F and ALYREF in motor neurons, the primary target of pathology in amyotrophic lateral sclerosis. Direct binding of proteins to GGGGCC repeat RNA was confirmed in vitro by ultraviolet-crosslinking assays. Co-localization was only detected in a small proportion of RNA foci, suggesting dynamic sequestration rather than irreversible binding. Additional immunohistochemistry demonstrated that neurons with and without RNA foci were equally likely to show nuclear depletion of TDP-43 (χ(2) P = 0.75) or poly-GA dipeptide repeat protein inclusions (χ(2) P = 0.46). Our findings suggest two non-exclusive pathogenic mechanisms: (i) functional depletion of RNA-processing proteins resulting in disruption of messenger RNA splicing; and (ii) licensing of expanded C9orf72 pre-messenger RNA for nuclear export by inappropriate association with messenger RNA export adaptor protein(s) leading to cytoplasmic repeat associated non-ATG translation and formation of potentially toxic dipeptide repeat protein.
Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA/genética , Proteínas/genética , Proteínas de Ligação a RNA/metabolismo , Trifosfato de Adenosina/farmacocinética , Esclerose Lateral Amiotrófica/patologia , Biotinilação , Encéfalo/patologia , Proteína C9orf72 , Feminino , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Masculino , Espectrometria de Massas , Neurônios/patologia , Proteínas Nucleares/metabolismo , Isótopos de Fósforo/farmacocinética , Ligação Proteica/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina , Fatores de Transcrição/metabolismoRESUMO
The size, composition and functioning of the spinal cord is likely to depend on appropriate numbers of progenitor and differentiated cells of a particular class, but little is known about how cell numbers are controlled in specific cell cohorts along the dorsoventral axis of the neural tube. Here, we show that FatJ cadherin, identified in a large-scale RNA interference (RNAi) screen of cadherin genes expressed in the neural tube, is localised to progenitors in intermediate regions of the neural tube. Loss of function of FatJ promotes an increase in dp4-vp1 progenitors and a concomitant increase in differentiated Lim1(+)/Lim2(+) neurons. Our studies reveal that FatJ mediates its action via the Hippo pathway mediator Yap1: loss of downstream Hippo components can rescue the defect caused by loss of FatJ. Together, our data demonstrate that RNAi screens are feasible in the chick embryonic neural tube, and show that FatJ acts through the Hippo pathway to regulate cell numbers in specific subsets of neural progenitor pools and their differentiated progeny.
Assuntos
Proteínas Aviárias/metabolismo , Caderinas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Proteínas Aviárias/antagonistas & inibidores , Proteínas Aviárias/genética , Sequência de Bases , Caderinas/antagonistas & inibidores , Caderinas/genética , Contagem de Células , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Tubo Neural/citologia , Tubo Neural/embriologia , Tubo Neural/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de SinaisRESUMO
SRSF2 is a prototypical SR protein which plays important roles in the alternative splicing of pre-mRNA. It has been shown to be involved in regulatory pathways for maintaining genomic stability and play important roles in regulating key receptors in the heart. We report here the solution structure of the RNA recognition motifs (RRM) domain of free human SRSF2 (residues 9-101). Compared with other members of the SR protein family, SRSF2 structure has a longer L3 loop region. The conserved aromatic residue in the RNP2 motif is absent in SRSF2. Calorimetric titration shows that the RNA sequence 5'AGCAGAGUA3' binds SRSF2 with a K(d) of 61 ± 1 nM and a 1:1 stoichiometry. NMR and mutagenesis experiments reveal that for SFSF2, the canonical ß1 and ß3 interactions are themselves not sufficient for effective RNA binding; the additional loop L3 is crucial for RNA complex formation. A comparison is made between the structures of SRSF2-RNA complex with other known RNA complexes of SR proteins. We conclude that interactions involving the L3 loop, N- and C-termini of the RRM domain are collectively important for determining selectivity between the protein and RNA.
Assuntos
Proteínas Nucleares/química , RNA/química , Ribonucleoproteínas/química , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Processamento de Serina-ArgininaRESUMO
Despite the nuclear localization of the m6A machinery, the genomes of multiple exclusively-cytoplasmic RNA viruses, such as chikungunya (CHIKV) and dengue (DENV), are reported to be extensively m6A-modified. However, these findings are mostly based on m6A-Seq, an antibody-dependent technique with a high rate of false positives. Here, we address the presence of m6A in CHIKV and DENV RNAs. For this, we combine m6A-Seq and the antibody-independent SELECT and nanopore direct RNA sequencing techniques with functional, molecular, and mutagenesis studies. Following this comprehensive analysis, we find no evidence of m6A modification in CHIKV or DENV transcripts. Furthermore, depletion of key components of the host m6A machinery does not affect CHIKV or DENV infection. Moreover, CHIKV or DENV infection has no effect on the m6A machinery's localization. Our results challenge the prevailing notion that m6A modification is a general feature of cytoplasmic RNA viruses and underscore the importance of validating RNA modifications with orthogonal approaches.
Assuntos
Adenosina/análogos & derivados , Febre de Chikungunya , Vírus Chikungunya , Vírus da Dengue , Dengue , Humanos , Vírus Chikungunya/genética , Vírus da Dengue/genética , RNA Viral/genética , Anticorpos AntiviraisRESUMO
Previously, we showed that the germ cell-specific nuclear protein RBMXL2 represses cryptic splicing patterns during meiosis and is required for male fertility (Ehrmann et al., 2019). Here, we show that in somatic cells the similar yet ubiquitously expressed RBMX protein has similar functions. RBMX regulates a distinct class of exons that exceed the median human exon size. RBMX protein-RNA interactions are enriched within ultra-long exons, particularly within genes involved in genome stability, and repress the selection of cryptic splice sites that would compromise gene function. The RBMX gene is silenced during male meiosis due to sex chromosome inactivation. To test whether RBMXL2 might replace the function of RBMX during meiosis we induced expression of RBMXL2 and the more distantly related RBMY protein in somatic cells, finding each could rescue aberrant patterns of RNA processing caused by RBMX depletion. The C-terminal disordered domain of RBMXL2 is sufficient to rescue proper splicing control after RBMX depletion. Our data indicate that RBMX and RBMXL2 have parallel roles in somatic tissues and the germline that must have been conserved for at least 200 million years of mammalian evolution. We propose RBMX family proteins are particularly important for the splicing inclusion of some ultra-long exons with increased intrinsic susceptibility to cryptic splice site selection.
Assuntos
Éxons , Sítios de Splice de RNA , Splicing de RNA , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Éxons/genética , Sítios de Splice de RNA/genética , Masculino , Meiose/genética , Animais , Ribonucleoproteínas Nucleares HeterogêneasRESUMO
The herpesvirus proteins HSV-1 ICP27 and HVS ORF57 promote viral mRNA export by utilizing the cellular mRNA export machinery. This function is triggered by binding to proteins of the transcription-export (TREX) complex, in particular to REF/Aly which directs viral mRNA to the TAP/NFX1 pathway and, subsequently, to the nuclear pore for export to the cytoplasm. Here we have determined the structure of the REF-ICP27 interaction interface at atomic-resolution and provided a detailed comparison of the binding interfaces between ICP27, ORF57 and REF using solution-state NMR. Despite the absence of any obvious sequence similarity, both viral proteins bind on the same site of the folded RRM domain of REF, via short but specific recognition sites. The regions of ICP27 and ORF57 involved in binding by REF have been mapped as residues 104-112 and 103-120, respectively. We have identified the pattern of residues critical for REF/Aly recognition, common to both ICP27 and ORF57. The importance of the key amino acid residues within these binding sites was confirmed by site-directed mutagenesis. The functional significance of the ORF57-REF/Aly interaction was also probed using an ex vivo cytoplasmic viral mRNA accumulation assay and this revealed that mutants that reduce the protein-protein interaction dramatically decrease the ability of ORF57 to mediate the nuclear export of intronless viral mRNA. Together these data precisely map amino acid residues responsible for the direct interactions between viral adaptors and cellular REF/Aly and provide the first molecular details of how herpes viruses access the cellular mRNA export pathway.
Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Imediatamente Precoces/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Exodesoxirribonucleases/metabolismo , Herpesvirus Humano 1/genética , Humanos , Proteínas Imediatamente Precoces/química , Dados de Sequência Molecular , Fosfoproteínas/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Viral/química , Proteínas Repressoras/química , Transativadores/químicaRESUMO
The hTREX complex mediates cellular bulk mRNA nuclear export by recruiting the nuclear export factor, TAP, via a direct interaction with the export adaptor, Aly. Intriguingly however, depletion of Aly only leads to a modest reduction in cellular mRNA nuclear export, suggesting the existence of additional mRNA nuclear export adaptor proteins. In order to efficiently export Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs from the nucleus, the KSHV ORF57 protein recruits hTREX onto viral intronless mRNAs allowing access to the TAP-mediated export pathway. Similarly however, depletion of Aly only leads to a modest reduction in the nuclear export of KSHV intronless mRNAs. Herein, we identify a novel interaction between ORF57 and the cellular protein, UIF. We provide the first evidence that the ORF57-UIF interaction enables the recruitment of hTREX and TAP to KSHV intronless mRNAs in Aly-depleted cells. Strikingly, depletion of both Aly and UIF inhibits the formation of an ORF57-mediated nuclear export competent ribonucleoprotein particle and consequently prevents ORF57-mediated mRNA nuclear export and KSHV protein production. Importantly, these findings highlight that redundancy exists in the eukaryotic system for certain hTREX components involved in the mRNA nuclear export of intronless KSHV mRNAs.
Assuntos
Núcleo Celular/metabolismo , Herpesvirus Humano 8/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/genética , Núcleo Celular/virologia , Células HEK293 , Herpesvirus Humano 8/genética , Humanos , Proteínas Nucleares/genética , RNA Mensageiro/genética , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas Virais/genéticaRESUMO
The epitranscriptomic modification N6-methyladenosine (m6A) is a ubiquitous feature of the mammalian transcriptome. It modulates mRNA fate and dynamics to exert regulatory control over numerous cellular processes and disease pathways, including viral infection. Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation from the latent phase leads to the redistribution of m6A topology upon both viral and cellular mRNAs within infected cells. Here we investigate the role of m6A in cellular transcripts upregulated during KSHV lytic replication. Our results show that m6A is crucial for the stability of the GPRC5A mRNA, whose expression is induced by the KSHV latent-lytic switch master regulator, the replication and transcription activator (RTA) protein. Moreover, we demonstrate that GPRC5A is essential for efficient KSHV lytic replication by directly regulating NFκB signalling. Overall, this work highlights the central importance of m6A in modulating cellular gene expression to influence viral infection.
Assuntos
Herpesvirus Humano 8 , Herpesvirus Humano 8/genética , Latência Viral/genética , Linhagem Celular Tumoral , Transdução de Sinais , RNA Mensageiro/genética , Replicação Viral , Regulação Viral da Expressão GênicaRESUMO
Melioidosis is a disease caused by infection with Burkholderia pseudomallei. The molecular basis for the pathogenicity of B. pseudomallei is poorly understood. However, recent work has identified the first toxin from this bacterium and shown that it inhibits host protein synthesis. Here, we review the illness that is potentially associated with biological warfare, the pathogen and its deadly molecular mechanism of action, as well as therapeutic developments that may follow.
Assuntos
Toxinas Bacterianas/metabolismo , Burkholderia pseudomallei/patogenicidade , Melioidose/metabolismo , Animais , Burkholderia pseudomallei/metabolismo , Humanos , Biossíntese de ProteínasRESUMO
The REF/ALY mRNA export adaptor binds TAP/NXF1 via an arginine-rich region, which overlaps with its RNA-binding domain. When TAP binds a REF:RNA complex, it triggers transfer of the RNA from REF to TAP. Here, we have examined the effects of arginine methylation on the activities of the REF protein in mRNA export. We have mapped the arginine methylation sites of REF using mass spectrometry and find that several arginines within the TAP and RNA binding domains are methylated in vivo. However, arginine methylation has no effect on the REF:TAP interaction. Instead, arginine methylation reduces the RNA-binding activity of REF in vitro and in vivo. The reduced RNA-binding activity of REF in its methylated state is essential for efficient displacement of RNA from REF by TAP in vivo. Therefore, arginine methylation fine-tunes the RNA-binding activity of REF such that the RNA-protein interaction can be readily disrupted by export factors further down the pathway.
Assuntos
Arginina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular , Humanos , Espectrometria de Massas , Metilação , Proteínas Nucleares/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Ligação a RNA/química , Proteínas Repressoras/metabolismo , Fatores de Transcrição/químicaRESUMO
Vertebrate cranial sensory ganglia, responsible for sensation of touch, taste and pain in the face and viscera, are composed of both ectodermal placode and neural crest cells. The cellular and molecular interactions allowing generation of complex ganglia remain unknown. Here, we show that proper formation of the trigeminal ganglion, the largest of the cranial ganglia, relies on reciprocal interactions between placode and neural crest cells in chick, as removal of either population resulted in severe defects. We demonstrate that ingressing placode cells express the Robo2 receptor and early migrating cranial neural crest cells express its cognate ligand Slit1. Perturbation of this receptor-ligand interaction by blocking Robo2 function or depleting either Robo2 or Slit1 using RNA interference disrupted proper ganglion formation. The resultant disorganization mimics the effects of neural crest ablation. Thus, our data reveal a novel and essential role for Robo2-Slit1 signaling in mediating neural crest-placode interactions during trigeminal gangliogenesis.