Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(6): 1879-1888, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37947075

RESUMO

Extended defects, like threading dislocations, are detrimental to the performance of optoelectronic devices. In the scanning electron microscope, dislocations are traditionally imaged using diodes to monitor changes in backscattered electron intensity as the electron beam is scanned over the sample, with the sample positioned so the electron beam is at, or close to the Bragg angle for a crystal plane/planes. Here, we use a pixelated detector instead of single diodes, specifically an electron backscatter diffraction (EBSD) detector. We present postprocessing techniques to extract images of dislocations and surface steps, for a nitride thin film, from measurements of backscattered electron intensities and intensity distributions in unprocessed EBSD patterns. In virtual diode (VD) imaging, the backscattered electron intensity is monitored for a selected segment of the unprocessed EBSD patterns. In center of mass (COM) imaging, the position of the center of the backscattered electron intensity distribution is monitored. Additionally, both methods can be combined (VDCOM). Using both VD and VDCOM, images of only threading dislocations, or dislocations and surface steps can be produced, with VDCOM images exhibiting better signal-to-noise. The applicability of VDCOM imaging is demonstrated across a range of nitride semiconductor thin films, with varying surface step and dislocation densities.

2.
Microsc Microanal ; : 1-7, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35392998

RESUMO

The crystallographic analysis of nanoscale phases with dimensions well below the spatial probing volume of electron backscatter diffraction (EBSD) traditionally rely on electron microscopy in transmission (either in SEM or TEM), because EBSD patterns are invariably dominated by the matrix phase contribution and present seemingly no trace from such nanoscale phases. Yet, this study shows that such nanoscale features generate a very faint but valuable secondary diffraction signal which can be retrieved. A diffraction pattern postprocessing method is presented which focuses on the detection of such secondary signal emitted by nanoscale minority phases in overlapped patterns dominated by a dominant matrix signal. The predominant, majority phase contribution in EBSD patterns is removed by a close-neighbor pattern subtraction routine, after which both the conventional Hough indexing method as well as pattern matching methods can be used to reveal the crystallography, spatial distribution, morphology, and orientation of nanoscale minority phases initially absent from EBSD maps. Nanolamellar pearlitic steel, which has long been out of reach for EBSD, has been chosen as an application example.

3.
J Microsc ; 284(2): 157-184, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34275156

RESUMO

We discuss a refined simulation approach which treats Kikuchi diffraction patterns in electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD). The model considers the result of two combined mechanisms: (a) the dynamical diffraction of electrons emitted coherently from point sources in a crystal and (b) diffraction effects on incoherent diffuse intensity distributions. Using suitable parameter settings, the refined simulation model allows to reproduce various thickness- and energy-dependent features which are observed in experimental Kikuchi diffraction patterns. Excess-deficiency features are treated by the effect of gradients in the incoherent background intensity. Based on the analytical two-beam approximation to dynamical electron diffraction, a phenomenological model of excess-deficiency features is derived, which can be used for pattern matching applications. The model allows to approximate the effect of the incident beam geometry as a correction signal for template patterns which can be reprojected from pre-calculated reference data. As an application, we find that the accuracy of fitted projection centre coordinates in EBSD and TKD can be affected by changes in the order of 10 - 3 - 10 - 2 if excess-deficiency features are not considered in the theoretical model underlying a best-fit pattern matching approach. Correspondingly, the absolute accuracy of simulation-based EBSD strain determination can suffer from biases of a similar order of magnitude if excess-deficiency effects are neglected in the simulation model.

6.
Nano Lett ; 16(5): 3195-201, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27070050

RESUMO

In order to understand the physical and chemical properties of advanced materials, functional molecular adsorbates, and protein structures, a detailed knowledge of the atomic arrangement is essential. Up to now, if subsurface structures are under investigation, only indirect methods revealed reliable results of the atoms' spatial arrangement. An alternative and direct method is three-dimensional imaging by means of holography. Holography was in fact proposed for electron waves, because of the electrons' short wavelength at easily accessible energies. Further, electron waves are ideal structure probes on an atomic length scale, because electrons have a high scattering probability even for light elements. However, holographic reconstructions of electron diffraction patterns have in the past contained severe image artifacts and were limited to at most a few tens of atoms. Here, we present a general reconstruction algorithm that leads to high-quality atomic images showing thousands of atoms. Additionally, we show that different elements can be identified by electron holography for the example of FeS2.

7.
Ultramicroscopy ; 260: 113940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38422822

RESUMO

The remarkable physical properties of dental enamel can be largely attributed to the structure of the hydroxyapatite (HAp) crystallites on the sub-micrometre scale. Characterising the HAp microstructure is challenging, due to the nanoscale of individual crystallites and practical challenges associated with HAp examination using electron microscopy techniques. Conventional methods for enamel characterisation include imaging using transmission electron microscopy (TEM) or specialised beamline techniques, such as polarisation-dependent imaging contrast (PIC). These provide useful information at the necessary spatial resolution but are not able to measure the full crystallographic orientation of the HAp crystallites. Here we demonstrate the effectiveness of enamel analyses using transmission Kikuchi diffraction (TKD) in the scanning electron microscope, coupled with newly-developed pattern matching methods. The pattern matching approach, using dynamic template matching coupled with subsequent orientation refinement, enables robust indexing of even poor-quality TKD patterns, resulting in significantly improved data quality compared to conventional diffraction pattern indexing methods. The potential of this method for the analysis of nanocrystalline enamel structures is demonstrated by the characterisation of a human enamel TEM sample and the subsequent comparison of the results to high resolution TEM imaging. The TKD - pattern matching approach measures the full HAp crystallographic orientation enabling a quantitative measurement of not just the c-axis orientations, but also the extent of any rotation of the crystal lattice about the c-axis, between and within grains. Results presented here show how this additional information highlights potentially significant aspects of the HAp crystallite structure, including intra-crystallite distortion and the presence of multiple high angle boundaries between adjacent crystallites with rotations about the c-axis. These and other observations enable a more rigorous understanding of the relationship between HAp structures and the physical properties of dental enamel.

8.
Ultramicroscopy ; 253: 113824, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572392

RESUMO

To visualize the varying tetragonal distortions in high carbon martensitic steels by EBSD, two different approaches have been applied on backscattered Kikuchi diffraction (BKD) patterns. A band-edge refinement technique called Refined Accuracy (RA) (Oxford Instruments) is compared with a technique called Pattern Matching (PM), which optimizes the fit to a simulated BKD signal. RA distinguishes between hypothetical phases of different fixed c/a, while PM determines a best fitting continuous c/a by projective transformation of a master pattern. Both techniques require stored BKD patterns. The sensitivity of the c/a-determination was tested by investigating the microstructure of a ferritic steel with an expected c/a=1. The influence of the Kikuchi pattern noise on c/a was compared for a single or 40 averaged frames per measuring point, and turned out to be not significant. The application of RA and PM on the martensitic microstructure delivered qualitatively similar maps of c/a. The comparison of RA and PM shows that RA is suitably fast and precise during mapping the martensite c/a ratio in analyses of high carbon martensite, especially for fast initial surveys. As RA leads quantitatively to higher noise in c/a, the PM analysis can be used for higher precision results.

9.
Materials (Basel) ; 15(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36233995

RESUMO

A novel approach for the correlation of local martensite tetragonality determined by electron backscatter diffraction and carbon distribution by atom probe tomography (APT) is presented. The two methods are correlated by site-specific sample preparation for APT based on the local tetragonality. This approach is used to investigate the local carbon distribution in high carbon steel with varying local martensite tetragonality. Regions with low tetragonality show clear agglomeration of carbon based on statistical nearest neighbour (NN) analysis, while regions with high tetragonality show only small elongated agglomerations of carbon and no significant clustering using NN analysis. The APT average bulk carbon content shows no quantitative difference between regions with low and high tetragonality, indicating that no significant long-range diffusion of carbon has taken place.

10.
Phys Rev Lett ; 106(8): 085503, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21405583

RESUMO

A novel diffraction effect in high-energy electron backscattering is demonstrated: the formation of element-specific diffraction patterns via nuclear recoil. For sapphire (Al(2)O(3)), the difference in recoil energy allows us to determine if an electron scattered from aluminum or from oxygen. The angular electron distribution obtained in such measurements is a strong function of the recoiling lattice site. These element-specific recoil diffraction features are explained using the dynamical theory of electron diffraction. Our observations open up new possibilities for local, element-resolved crystallographic analysis using quasielastically backscattered electrons in scanning electron microscopy.

11.
J Phys Chem A ; 115(34): 9479-84, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21506579

RESUMO

We report a systematic investigation of the electronic structure of chemisorbed alkali atoms (Li-Cs) on a Ag(111) surface by two-photon photoemission spectroscopy. Angle-resolved two-photon photoemission spectra are obtained for 0-0.1 monolayer coverage of alkali atoms. The interfacial electronic structure as a function of periodic properties and the coverage of alkali atoms is observed and interpreted assuming ionic adsorbate/substrate interaction. The energy of the alkali atom σ-resonance at the limit of zero coverage is primarily determined by the image charge interaction, whereas at finite alkali atom coverages, it follows the formation of a dipolar surface field. The coverage- and angle-dependent two-photon photoemission spectra provide information on the photoinduced charge-transfer excitation of adsorbates on metal surfaces. This work complements the previous work on alkali/Cu(111) chemisorption [Phys. Rev. B 2008, 78, 085419].

12.
J Appl Crystallogr ; 54(Pt 3): 1012-1022, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34188620

RESUMO

A new software is presented for the determination of crystal lattice parameters from the positions and widths of Kikuchi bands in a diffraction pattern. Starting with a single wide-angle Kikuchi pattern of arbitrary resolution and unknown phase, the traces of all visibly diffracting lattice planes are manually derived from four initial Kikuchi band traces via an intuitive graphical user interface. A single Kikuchi bandwidth is then used as reference to scale all reciprocal lattice point distances. Kikuchi band detection, via a filtered Funk transformation, and simultaneous display of the band intensity profile helps users to select band positions and widths. Bandwidths are calculated using the first derivative of the band profiles as excess-deficiency effects have minimal influence. From the reciprocal lattice, the metrics of possible Bravais lattice types are derived for all crystal systems. The measured lattice parameters achieve a precision of <1%, even for good quality Kikuchi diffraction patterns of 400 × 300 pixels. This band-edge detection approach has been validated on several hundred experimental diffraction patterns from phases of different symmetries and random orientations. It produces a systematic lattice parameter offset of up to ±4%, which appears to scale with the mean atomic number or the backscatter coefficient.

13.
Ultramicroscopy ; 230: 113372, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34479040

RESUMO

Signal optimization for transmission Kikuchi diffraction (TKD) measurements in the scanning electron microscope is investigated by a comparison of different sample holder designs. An optimized design is presented, which uses a metal shield to efficiently trap the electron beam after transmission through the sample. For comparison, a second holder configuration allows a significant number of the transmitted electrons to scatter back from the surface of the sample holder onto the diffraction camera screen. It is shown that the secondary interaction with the sample holder leads to a significant increase in the background level, as well as to additional noise in the final Kikuchi diffraction signal. The clean TKD signal of the optimized holder design with reduced background scattering makes it possible to use small signal changes in the range of 2% of the camera full dynamic range. As is shown by an analysis of the power spectrum, the signal-to-noise ratio in the processed Kikuchi diffraction patterns is improved by an order of magnitude. As a result, the optimized design allows an increase in pattern signal to noise ratio which may lead to increase in measurement speed and indexing reliability.

14.
ACS Nano ; 15(4): 7139-7148, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33770442

RESUMO

Metal halide perovskite (MHP) solar cells have attracted worldwide research interest. Although it has been well established that grain, grain boundary, and grain facet affect MHPs optoelectronic properties, less is known about subgrain structures. Recently, MHP twin stripes, a subgrain feature, have stimulated extensive discussion due to the potential for both beneficial and detrimental effects of ferroelectricity on optoelectronic properties. Connecting the ferroic behavior of twin stripes in MHPs with crystal orientation will be a vital step to understand the ferroic nature and the effects of twin stripes. In this work, we studied the crystallographic orientation and ferroic properties of CH3NH3PbI3 twin stripes, using electron backscatter diffraction (EBSD) and advanced piezoresponse force microscopy (PFM), respectively. Using EBSD, we discovered that the orientation relationship across the twin walls in CH3NH3PbI3 is a 90° rotation about ⟨1̅1̅0⟩, with the ⟨030⟩ and ⟨111⟩ directions parallel to the direction normal to the surface. By careful inspection of CH3NH3PbI3 PFM results including in-plane and out-of-plane PFM measurements, we demonstrate some nonferroelectric contributions to the PFM responses of this CH3NH3PbI3 sample, suggesting that the PFM signal in this CH3NH3PbI3 sample is affected by nonferroelectric and nonpiezoelectric forces. If there is piezoelectric response, it is below the detection sensitivity of our interferometric displacement sensor PFM (<0.615 pm/V). Overall, this work offers an integrated picture describing the crystallographic orientations and the origin of PFM signal of MHPs twin stripes, which is critical to understanding the ferroicity in MHPs.

15.
Sci Adv ; 7(20)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33990329

RESUMO

The assignment of enantiomorphs by diffraction methods shows fundamental differences for x-rays and electrons. This is particularly evident for the chiral allotrope of ß-Mn. While it is not possible to determine the sense of chirality of ß-Mn with established x-ray diffraction methods, Kikuchi pattern simulation of the enantiomorphs reveals differences, if dynamical electron diffraction is considered. Quantitative comparison between experimental and simulated Kikuchi patterns allows the spatially resolved assignment of the enantiomorph in polycrystalline materials of ß-Mn, as well as the structurally strongly related phase Pt2Cu3B. On the basis of enantiomorph distribution maps, crystals were extracted from enantiopure domains by micropreparation techniques. The x-ray diffraction analyses confirm the assignment of the Kikuchi pattern evaluations for Pt2Cu3B and do not allow to distinguish between the enantiomorphs of ß-Mn.

16.
J Appl Crystallogr ; 53(Pt 2): 435-443, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32280320

RESUMO

A historical tool for crystallographic analysis is provided by the Hilton net, which can be used for manually surveying the crystal lattice as it is manifested by the Kikuchi bands in a gnomonic projection. For a quantitative analysis using the Hilton net, the projection centre as the relative position of the signal source with respect to the detector plane needs to be known. Interplanar angles are accessible with a precision and accuracy which is estimated to be ≤0.3°. Angles between any directions, e.g. zone axes, are directly readable. Finally, for the rare case of an unknown projection-centre position, its determination is demonstrated by adapting an old approach developed for photogrammetric applications. It requires the indexing of four zone axes [uvw] i in a backscattered Kikuchi diffraction pattern of a known phase collected under comparable geometric conditions.

17.
Materials (Basel) ; 13(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585868

RESUMO

For the precise determination of orientations in polycrystalline materials, electron backscatter diffraction (EBSD) requires a consistent calibration of the diffraction geometry in the scanning electron microscope (SEM). In the present paper, the variation of the projection center for the Kikuchi diffraction patterns which are measured by EBSD is calibrated using a projective transformation model for the SEM beam scan positions on the sample. Based on a full pattern matching approach between simulated and experimental Kikuchi patterns, individual projection center estimates are determined on a subgrid of the EBSD map, from which least-square fits to affine and projective transformations can be obtained. Reference measurements on single-crystalline silicon are used to quantify the orientation errors which result from different calibration models for the variation of the projection center.

18.
Sci Rep ; 10(1): 4065, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132558

RESUMO

The absence of centrosymmetry in chiral and polar crystal structures is the reason for many technical relevant physical properties like optical birefringence or ferroelectricity. Other chirality related properties that are actually intensively investigated are unconventional superconductivity or unusual magnetic ordering like skyrmions in materials with B20 structure. Despite the often close crystal structure - property relation, its detection is often challenging due to superposition of domains with different absolute structure e.g. chirality. Our investigations of high quality CoSi crystals with B20 structure by both complementary methods X- ray (volume sensitive) and electron backscatter diffraction (EBSD) (surface sensitive) results the consistent assignment of the chirality and reveal fundamental differences in their sensitivity to chirality. The analysis of the surface of a CoSi crystal with domains of different chirality show the high spatial resolution of this method which opens the possibility to analyze the chirality in microstructures of technical relevant materials like thin films and catalysts.

19.
Ultramicroscopy ; 218: 113093, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32920465

RESUMO

Orientation mapping of quasicrystalline materials is demonstrated using crystalline approximant structures in the technique of electron backscatter diffraction (EBSD). The approximant-based orientations are symmetrised according to the rotational point group of the quasicrystal, including the visualization of orientation maps using proper colour keys for quasicrystal symmetries. Alternatively, approximant-based orientation data can also be treated using pseudosymmetry post-processing options in the EBSD system software, which enables basic grain size estimations. Approximant-based orientation analyses are demonstrated for icosahedral and decagonal quasicrystals.

20.
Ultramicroscopy ; 108(12): 1546-50, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18583053

RESUMO

We present a model which describes the appearance of excess and deficiency features in electron backscatter diffraction (EBSD) patterns and we show how to include this effect in many-beam dynamical simulations of EBSD. The excess and deficiency features appear naturally if we take into account the anisotropy of the internal source of inelastically scattered electrons which are subsequently scattered elastically to produce the EBSD pattern. The results of simulations applying this model show very good agreement with experimental patterns. The amount of the excess-deficiency asymmetry of the Kikuchi bands depends on their relative orientation with respect to the incident beam direction. In addition, higher order Laue zone rings are also influenced by the same effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA