Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 40(10): 2265-8, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26393715

RESUMO

Picosecond x-ray pulses are extracted with a phase-locked x-ray pulse selector at 1.25 MHz repetition rate from the pulse trains of the accelerator-driven multiuser x-ray source BESSY II preserving the peak brilliance at high pulse purity. The system consists of a specially designed in-vacuum chopper wheel rotating with ≈1 kHz angular frequency. The wheel is driven in an ultrahigh vacuum and is levitated on magnetic bearings being capable of withstanding high centrifugal forces. Pulses are picked by 1252 high-precision slits of 70 µm width on the outer rim of the wheel corresponding to a temporal opening window of the chopper of 70 ns. We demonstrate how the electronic phase stabilization of ±2 ns together with an arrival time jitter of the individual slits of the same order of magnitude allows us to pick short single bunch x-ray pulses out of a 200 ns ion clearing gap in a multibunch pulse train as emitted from a synchrotron facility at 1.25 MHz repetition rate with a pulse purity below the shot noise detection limit. The approach is applicable to any high-repetition pulsed radiation source, in particular in the x-ray spectral range up to 10 keV. The opening window in a real x-ray beamline, its stability, as well as the limits of mechanical pulse picking techniques in the MHz range are discussed.

2.
J Phys Condens Matter ; 22(9): 092201, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21389410

RESUMO

We have measured the correlated electron pair emission from a Cu(001) surface by both direct and core-resonant channels upon excitation with linearly polarized photons of energy far above the 3p threshold. As expected for a single-step process mediated by electron correlation in the initial and final states, the two electrons emitted by the direct channel continuously share the sum of the energy available to them. The core-resonant channel is often considered in terms of successive and independent steps of photoexcitation and Auger decay. However, electron pairs emitted by the core-resonant channel also share their energy continuously to jointly conserve the energy of the complete process. By detecting the electron pairs in parallel over a wide range of energy, evidence of the core-resonant double photoemission proceeding by a coherent single-step process is most strikingly manifested by a continuum of correlated electron pairs with a sum energy characteristic of the process but for which the individual electrons have arbitrary energies and cannot meaningfully be distinguished as a photoelectron or Auger electron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA